Workflow
基于可验证反馈的强化学习(RLVR)
icon
Search documents
让LLM扔块石头,它居然造了个投石机
量子位· 2025-10-22 15:27
Core Insights - The article discusses a new research platform called BesiegeField, developed by researchers from CUHK (Shenzhen), which allows large language models (LLMs) to design and build functional machines from scratch [2][39] - The platform enables LLMs to learn mechanical design through a process of reinforcement learning, where they can evolve their designs based on feedback from physical simulations [10][33] Group 1: Mechanism of Design - The research introduces a method called Compositional Machine Design, which simplifies complex designs into discrete assembly problems using standard parts [4][5] - A structured representation mechanism, similar to XML, is employed to facilitate understanding and modification of designs by the model [6][7] - The platform runs on Linux clusters, allowing hundreds of mechanical experiments simultaneously, providing comprehensive physical feedback such as speed, force, and energy changes [9][10] Group 2: Collaborative AI Workflow - To address the limitations of single models, the research team developed an Agentic Workflow that allows multiple AIs to collaborate on design tasks [23][28] - Different roles are defined within this workflow, including a Meta-Designer, Designer, Inspector, Active Env Querier, and Refiner, which collectively enhance the design process [28][31] - The hierarchical design strategy significantly outperforms single-agent or simple iterative editing approaches in tasks like building a catapult and a car [31] Group 3: Self-Evolution and Learning - The introduction of reinforcement learning (RL) through a strategy called RLVR allows models to self-evolve by using simulation feedback as reward signals [33][34] - The results show that as iterations increase, the models improve their design capabilities, achieving better performance in tasks [35][37] - The combination of cold-start strategies and RL leads to optimal scores in both catapult and car tasks, demonstrating the potential for LLMs to enhance mechanical design skills through feedback [38] Group 4: Future Implications - BesiegeField represents a new paradigm for structural creation, enabling AI to design not just static machines but dynamic structures capable of movement and collaboration [39][40] - The platform transforms complex mechanical design into a structured language generation task, allowing models to understand mechanical principles and structural collaboration [40]