Workflow
多信使天文学
icon
Search documents
引力波探测器迎来技术升级战
Ke Ji Ri Bao· 2025-09-18 23:55
Core Insights - The detection of gravitational waves by LIGO has opened a new era in gravitational wave astronomy, confirming over a hundred events and validating Stephen Hawking's black hole theory [1][2] - Next-generation detectors like CE, ET, and LISA are in development, promising unprecedented scientific breakthroughs [2][3] Next-Generation Detectors - CE, with a 40 km arm length, aims to detect 100,000 black hole merger events annually, covering the entire history of gravitational wave sources [2] - ET, a European initiative, will extend its frequency range to 1 Hz, allowing earlier detection of black hole collisions and larger mass mergers [2] - LISA, a space-based project, will consist of three satellites forming a triangle of 2.5 million km, targeting low-frequency gravitational waves [2] Technological Innovations - Next-generation detectors incorporate advanced technologies to enhance detection capabilities, such as longer arm lengths for improved sensitivity [3] - Techniques like advanced mirror coatings and low-temperature cooling significantly reduce thermal noise, enhancing detection in the mid-frequency range [3] - Quantum squeezing technology and AI systems are being utilized to suppress noise and improve measurement precision [3] Scientific Potential and Challenges - These detectors hold the potential to explore early universe phenomena, test fundamental physics theories, and advance multi-messenger astronomy [4][5] - They will provide insights into black hole formation, neutron star mergers, and cosmic expansion measurements [4] - However, challenges include noise suppression, precision engineering, and significant funding requirements for projects like ET and LISA [6]