Workflow
多智能体协作智能(MACI)
icon
Search documents
LLM距离AGI只差一层:斯坦福研究颠覆「模式匹配」观点
机器之心· 2025-12-10 10:30
机器之心报道 编辑:杨文、泽南 有关大语言模型的理论基础,可能要出现一些改变了。 斯坦福发了篇论文,彻底颠覆了「LLM 只是模式匹配器」的传统论调。 它提出的不是扩展技巧或新架构,而是一个让模型真正具备推理能力的「协调层」。 核心观点:AGI 的瓶颈在于协调,而非规模 人工智能界正因围绕大语言模型本质的争论而分裂。一方面,扩展派认为 LLMs 足以实现 AGI;另一方 面,有影响力的批评者认为 LLM「仅仅是模式匹配器」,在结构上不具备推理、规划或组合泛化能力,因 此是死胡同。 作者认为这场争论建立在一个错误的二分法之上,并提出一个颠覆性极强的核心观点: LLM 的失败不是因 为缺乏推理能力,而是因为我们缺少将其模式与目标绑定的系统。 为了解释这一点,作者用了一个捕鱼隐喻。 海洋代表模型庞大的模式库,渔夫不用鱼饵就撒网,收获的只是最常见的鱼类(训练数据中的通用模 式)。批评者谴责这些未锚定的输出,但他们观察到的只是未加诱饵的捕捞所产生的原始统计基线,这不 是系统损坏,而是系统在默认模式下的自然表现。 然而,智能行为不仅仅是撒网,它还涉及下饵和过滤。如果诱饵过于稀疏,它就无法吸引特定、稀有的 鱼,海洋的先验仍然 ...