Workflow
宇宙线传播模型
icon
Search documents
“悟空”号宇宙线研究获国际性突破
Xin Hua Ri Bao· 2025-05-20 22:56
Core Insights - The "Wukong" satellite has achieved the first precise measurement of the secondary cosmic ray boron spectrum in the TeV/n energy range, providing new observational evidence for revising cosmic ray propagation models [1][2] - The satellite's findings indicate a significant hardening structure in the boron spectrum around 200 GeV/n, suggesting that cosmic ray propagation may be slower than previously anticipated [2] Group 1: Scientific Achievements - The "Wukong" satellite, launched by China, is the first astronomical satellite dedicated to observing high-energy particles in space, with core scientific goals including dark matter particle detection and cosmic ray research [1] - The international collaboration group utilized eight years of observational data to achieve precise measurements of the boron element spectrum from 10 GeV/n to 8 TeV/n, surpassing previous space detection experiments in both measurement precision and energy limits [2] Group 2: Implications for Cosmic Ray Research - The observed hardening of the boron spectrum indicates that the particle flux at higher energies significantly exceeds classical model predictions, with the spectrum index increase being approximately twice that of primary cosmic ray protons and helium nuclei [2] - These findings are crucial for understanding the acceleration and propagation mechanisms of cosmic rays, as they provide insights into the diffusion process of cosmic rays in the universe [2]