Workflow
定量合成生物学
icon
Search documents
【科技日报】我国科研团队揭秘微生物“自我牺牲”行为
Ke Ji Ri Bao· 2025-05-28 01:17
Core Insights - The article discusses the phenomenon of "self-sacrifice" behavior in bees and microorganisms, highlighting its evolutionary significance and survival advantages for the group despite individual mortality [1][2][3]. Group 1: Research Findings - Researchers from the Shenzhen Institute of Advanced Technology have revealed how microorganisms exhibit "self-sacrifice" behavior under environmental stress, enhancing group survival [1][4]. - The study constructed two types of bacterial strains: "sacrificial" strains that release enzymes to degrade antibiotics and "cheater" strains that do not contribute to the group [2][3]. - The research demonstrated that in highly dispersed environments, the presence of sacrificial individuals significantly increases the overall survival rate of the group, while cheater strains are gradually eliminated [3]. Group 2: Methodology and Implications - The research utilized a synthetic biology system to simulate the behaviors of both sacrificial and cheater strains, employing automated machinery to enhance experimental efficiency [3][4]. - Findings indicate that the intensity of environmental pressure and the degree of dispersion influence the evolution of self-sacrificial behavior, with stronger pressures leading to more pronounced effects [3]. - The study's results provide insights into the evolutionary logic of extreme altruistic behaviors in nature and may offer new theoretical guidance for applications in biofilm control and antibiotic resistance management [4].
细胞内通信网络的“带宽极限”找到了
Ke Ji Ri Bao· 2025-04-23 01:16
日前,中国科学院深圳先进技术研究院定量合成生物学全国重点实验室研究员金帆团队与医学成像 科学与技术系统全国重点实验室研究员储军团队合作,首次揭示了细菌信号分子环磷酸腺苷(cAMP) 的极限通信能力。这标志着我国在人工生命系统理性设计领域迈出了关键一步。相关研究成果发表在国 际学术期刊《自然-物理》上。 信息传递极限能力未知 以工程思维破解难题 "在工程领域,我们常常关注系统的极限性能。比如,一条光纤能传输多少数据,或一个无线网络 能支持多少用户同时在线。这一思维模式同样适用于生命科学研究。"论文共同通讯作者金帆介绍。 2020年,研究团队提出了一个关键问题:细胞内部的信号分子cAMP究竟能以多快的速度传递信 息?这就像是在测试细胞内部通信网络的"带宽极限"。这一问题的答案,对于深入理解细胞如何应对复 杂多变的环境,以及未来构建高效的生命信息传递系统都具有重要意义。 为了解答这一问题,研究团队采用合成生物学的工程化手段,通过基因编辑技术敲除铜绿假单胞菌 中3个关键基因,从而构建出一个信号传递的简化系统。在此基础上,团队创新性地引入光遗传控制模 块bPAC和高灵敏度探针PF2。这两个工具在激发波长上存在差异,可以 ...