Workflow
思考忠实性
icon
Search documents
5分钟读懂Lilian Weng万字长文:大模型是怎么思考的?
Hu Xiu· 2025-05-22 09:54
Core Insights - The article discusses the latest paradigms in AI, particularly focusing on the concept of "test-time compute" and how large language models (LLMs) can enhance their reasoning capabilities through various methods [3][12][26]. Group 1: AI Paradigms - The blog systematically organizes the latest paradigms in AI, emphasizing "test-time compute" [3]. - LLMs exhibit similarities to human thought processes, drawing parallels with Daniel Kahneman's "Thinking, Fast and Slow" [4][5]. - The reasoning process in LLMs can be likened to human cognitive systems, where "System 1" represents quick, intuitive responses, and "System 2" denotes slower, analytical thinking [6][7]. Group 2: Enhancing Reasoning in LLMs - The concept of "Chain of Thought" (CoT) allows models to allocate variable computational resources based on problem complexity, particularly beneficial for complex reasoning tasks [9]. - Reinforcement learning (RL) has been scaled up in reasoning, with significant changes initiated by OpenAI's developments [14]. - The training process of models like DeepSeek R1 involves parallel sampling and sequential improvement, enhancing the reasoning capabilities of LLMs [15][16]. Group 3: External Tool Utilization - The use of external tools during the reasoning process can improve efficiency and accuracy, such as employing code interpreters for complex calculations [19]. - OpenAI's recent models, o3 and o4-mini, emphasize the importance of tool usage, which marks a paradigm shift in AI development [20][21]. Group 4: Future Research Directions - The article raises open questions for future research, such as improving RNNs to dynamically adjust computation layers and enhancing Transformer architectures for better reasoning [28]. - It also discusses the challenge of training models to generate human-readable CoTs that accurately reflect their reasoning processes while avoiding reward hacking [29][30].