Workflow
数据集制作
icon
Search documents
即将开课!自动驾驶VLA全栈学习路线图分享~
自动驾驶之心· 2025-10-15 23:33
Core Insights - The focus of academia and industry has shifted towards VLA (Vision-Language Action) in autonomous driving, which provides human-like reasoning capabilities for vehicle decision-making [1][4] - Traditional methods in perception and lane detection have matured, leading to decreased attention in these areas, while VLA is now a critical area for development among major autonomous driving companies [4][6] Summary by Sections Introduction to VLA - VLA is categorized into modular VLA, integrated VLA, and reasoning-enhanced VLA, which are essential for improving the reliability and safety of autonomous driving [1][4] Course Overview - A comprehensive course on autonomous driving VLA has been designed, covering foundational principles to practical applications, including cutting-edge algorithms like CoT, MoE, RAG, and reinforcement learning [6][12] Course Structure - The course consists of six chapters, starting with an introduction to VLA algorithms, followed by foundational algorithms, VLM as an interpreter, modular and integrated VLA, reasoning-enhanced VLA, and a final project [12][20] Chapter Highlights - Chapter 1 provides an overview of VLA algorithms and their development history, along with benchmarks and evaluation metrics [13] - Chapter 2 focuses on the foundational knowledge of Vision, Language, and Action modules, including the deployment of large models [14] - Chapter 3 discusses VLM's role as an interpreter in autonomous driving, covering classic and recent algorithms [15] - Chapter 4 delves into modular and integrated VLA, emphasizing the evolution of language models in planning and control [16] - Chapter 5 explores reasoning-enhanced VLA, introducing new modules for decision-making and action generation [17][19] Learning Outcomes - The course aims to deepen understanding of VLA's current advancements, core algorithms, and applications in projects, benefiting participants in internships and job placements [24]