Workflow
极化激元
icon
Search documents
新策略实现芯片上纳米尺度光操控
Ke Ji Ri Bao· 2025-10-10 23:46
随着芯片尺寸不断缩小、能耗要求持续降低,如何在纳米尺度上精确控制光的传播,已成为发展下一代 信息技术的核心瓶颈。"作为一种由光与材料耦合形成的特殊电磁波,极化激元能将光能量高度压缩在 纳米尺度,是实现超小型光子器件的关键利器。"论文共同通讯作者、上海交通大学教授戴庆告诉记 者。 在各种极化激元形态中,高阶双曲声子极化激元约束光场的能力比普通极化激元更强,尤其适合制造更 紧凑的纳米器件。但它的"激发门槛"极高,传统方法难以实现高阶极化激元的有效激发和操控。 我国科学家在纳米尺度光操控领域取得重要进展。记者10日获悉,来自上海交通大学、国家纳米科学中 心等单位的科研人员,成功实现芯片上纳米光信号的高效激发与路径分离,为开发更小、更快、能耗更 低的下一代光子芯片奠定了坚实基础。相关研究成果发表于《自然·光子学》杂志。 为解决这一难题,科研人员提出了"两步走"激发策略:第一步,用特制金属天线将普通激光转换成一种 基础模式的纳米光波;第二步,让这种光波经过一个极其平整的黄金边界,通过散射巧妙地将其"转 换"成所需的高阶光波。 "利用这种方法,我们不仅在室温下实现了高阶光波的长距离、低损耗传输,还通过精巧的结构设计, 像 ...
纳米光子器件中实现光信号跨结构“穿梭”
Ke Ji Ri Bao· 2025-07-31 23:53
Core Insights - A significant research breakthrough in the field of nano-photonic device interconnection has been published in the journal Nature Materials, addressing the challenge of efficient light signal transmission across different structures [1][2] Group 1: Research Findings - Researchers from Shanghai Jiao Tong University and the National Center for Nanoscience and Technology have successfully utilized a "wake" effect, akin to that produced by ships, to solve the problem of light signal transmission in nano-photonic devices [1] - The study highlights the potential of surface plasmon polaritons, which can compress light at the nanoscale and enhance the optical field, but face challenges in transmission due to rapid decay [1][2] - By combining the strong focusing ability of surface plasmon polaritons with the directional propagation characteristics of leaky waves, a new type of optical wave mode resembling "ship wake" was created in special layered materials [1] Group 2: Implications and Applications - The research indicates that the newly developed "light wake" allows for controlled transmission of light waves across different material structures, significantly enhancing the integration of nano-photonic devices [2] - Further studies revealed that by rotating the material layers, the direction, shape, and propagation speed of the "light wake" can be modulated, paving the way for practical applications in optical computing and high-speed information processing [2]