Workflow
光子芯片
icon
Search documents
泰国也要制造芯片
半导体芯闻· 2026-01-08 10:36
如果您希望可以时常见面,欢迎标星收藏哦~ 五、环境优化:简化企业审批流程,推动与欧美达成贸易协定,建立政府采购机制支持本土芯片产 品。 泰国国家半导体与先进电子产业政策委员会(隶属投资促进委员会)于日前召开会议,首次审议了 《国家半导体产业发展战略蓝图(草案)》。该蓝图提出将通过五大驱动机制,推动泰国建设成为 区域半导体产业中心,力争到2050年实现"泰国制造芯片"的远景目标。根据规划,泰国计划吸引 相关领域投资总额超过2.5万亿泰铢,并累计培养23万名高素质产业人才。 投资促进委员会秘书长纳立表示,1月7日,由副总理兼财政部长主持的委员会会议,对自2025年4 月起组织编制的《国家半导体与先进电子产业发展战略(草案)》进行了初步审议。该草案由国际 知名咨询机构罗兰贝格研究撰写,在由BOI、国家经济社会发展委员会、工业部、微电子技术中 心、国家高教科研创新政策委员会等单位组成的专项小组指导下完成,并获得了国内外企业的协作 支持。 战略编制过程中,研究团队通过广泛调研、专家座谈、产业分析等方式,全面评估了全球半导体供 应链格局、各国政策动向以及泰国产业基础与竞争优势,明确了发展愿景、目标指标、战略路径与 配套政 ...
资本活水精准浇灌科创花
Shan Xi Ri Bao· 2026-01-05 00:37
2025年12月23日,在位于西安高新区的陕西鼎益科技有限公司研发车间,数字化高温合金及钛合金 全连轧智能生产线平稳运行,输出直径仅5毫米、单重300公斤的钛合金盘圆。 "省政府投资引导基金所设子基金对我们公司在高端材料领域的潜力十分认可,2022年、2024年总 计给我们投资2000万元。"该公司负责人葛强表示,"这对我们的科技研发起到了关键作用。如今,公司 的TIPRO钛产品已成为全球钛合金增材制造3D打印材料的领导品牌,远销全球40多个国家。" 这并非孤例。在陕西,由千亿级基金集群引领的资本活水正滋养着三秦大地的科创森林。从光子产 业、高端装备到新能源、现代农业,资本与科技的深度融合正催生陕西经济的新动能。 "基金不仅领投了1000万元启动资金,解了我们的燃眉之急,还发挥自身优势,促成多家投资机构 后续联合投资4300余万元,形成了'投资联动'的放大效应。如今,我们已建成7条生产线,产品成功配 套高端车型,预计2025年产值将突破亿元。"西安锐磁电子科技有限公司负责人刘明说。 "近年来,省政府投资引导基金90%以上的资金投向科创型企业,全省共有144家专精特新企业获得 加持。"陕西省政府投资引导基金管理 ...
名城名校书写“未来契约”
Xin Hua Ri Bao· 2025-12-28 21:59
Core Viewpoint - The signing of a new comprehensive strategic cooperation agreement between Nanjing University and the Nanjing Municipal Government marks a significant step towards integrating education, technology, and talent in response to the challenges of the era, aiming to deepen the connection between top university disciplines and urban innovation [1][5]. Group 1: Strategic Cooperation and Academic Restructuring - The agreement outlines a precise roadmap for aligning academic disciplines with urban development, with Nanjing University planning to establish clusters in biomedicine and chemical engineering at the Jiangbei campus, while enhancing strengths in artificial intelligence and computer science at the Xianlin campus [1][2]. - The recent restructuring of the century-old School of Chemical Engineering into separate Chemical and Chemical Engineering Schools reflects a proactive approach to align academic resources with national strategies and regional industrial needs [1][3]. Group 2: Industry Alignment and Talent Development - The new School of Chemical Engineering is focused on applications in green chemistry and biomedicine, aiming to synchronize talent cultivation and research topics with regional industrial clusters [2][3]. - Nanjing University has established 36 new R&D institutions in collaboration with the local government, and has created six national key laboratories, demonstrating a strong commitment to driving original innovation [3]. Group 3: Innovation Ecosystem and Technology Transfer - The new agreement aims to create a more efficient and resilient innovation ecosystem, establishing a mechanism for regular alignment between research outcomes and market needs, with a target of publishing no less than 700 high-value results annually and facilitating at least 100 substantial collaborations [4]. - The establishment of the "Xianlin Angel Investment Fund" is intended to provide early-stage results with patient capital, fostering a comprehensive innovation chain from concept validation to industrial aggregation [4]. Group 4: Talent Attraction and Retention - The agreement sets ambitious goals for talent acquisition, including the recruitment of at least 30 top overseas scientists and their teams to work full-time in Nanjing, as well as the establishment of a national-level engineering excellence academy to address talent shortages [4]. - Approximately 2,300 graduates from Nanjing University choose to remain in Nanjing each year, with over 490 benefiting from local incentives, highlighting the importance of talent retention in the university-city relationship [4]. Group 5: Long-term Vision and Impact - The strategic cooperation agreement is seen as a blueprint for the future, aligning Nanjing University's research efforts with the major demands of industrial upgrading in Nanjing, and embedding the university deeper into the global intellectual network [5][6]. - The long-term vision emphasizes the need for universities to effectively contribute to urban industrial development, facilitating breakthroughs in technology and enhancing the region's competitiveness in the global landscape [6].
这项互联技术,要超越CPO!
半导体行业观察· 2025-12-28 02:49
Core Viewpoint - The speed of training large AI models ultimately depends on two concepts: scaling up and scaling out, which involve different physical connection technologies [1][2]. Group 1: Scaling Technologies - Scaling out refers to increasing the number of interconnected AI computers to handle large tasks, while scaling up involves integrating as many GPUs as possible within each computer [1]. - Scaling out relies on photonic chips and optical fibers for data transmission, while scaling up uses copper cables, which are simpler and more economical [1]. - The network density achieved through scaling up is approximately ten times that of scaling out, but the data transfer rates required for high-performance computing are approaching the physical limits of copper cables [1][2]. Group 2: Challenges with Copper Cables - Copper cables face limitations due to the skin effect, which causes high-frequency signals to concentrate near the surface, increasing resistance and requiring thicker cables and more power [7][8]. - Active electrical cables (AECs) have been developed to mitigate these issues, but they increase complexity and power consumption [8]. Group 3: Innovations in Data Transmission - Point2 Technology and AttoTude propose a new solution that combines the low cost and reliability of copper cables with the fine size and long-distance capabilities of optical fibers [2][4]. - Point2 plans to mass-produce cables capable of 1.6 terabits per second using polymer waveguides, while AttoTude is developing similar technology using terahertz frequencies [4][11]. - Both companies claim their technologies can easily surpass copper cables in transmission distance, achieving 10-20 meters without significant loss [4][5]. Group 4: Future Prospects - The wireless technology being developed is expected to be more reliable and easier to manufacture than photonic technology, potentially replacing some copper cables in printed circuit boards [5][14]. - The market for vertical expansion networks is growing, with companies looking to integrate more GPUs while minimizing cooling technology needs [15][16]. - Both Point2 and AttoTude are working on versions of their technology that can be directly integrated into GPUs, which could further enhance performance and efficiency [15][16].
摩尔线程与图灵量子达成合作 推动量子经典混合技术应用
据悉,图灵量子目前已构建完全自主可控的光子芯片和量子算法双底层核心技术驱动能力,牵头建设国 内首条光子芯片中试线,具备从芯片设计、制备、封装到量子算法与系统集成的全栈能力。摩尔线程作 为国内第一家挂牌上市的GPU企业,具备全功能GPU芯片的设计与研发能力,形成了覆盖人工智能、科 学计算与图形渲染等完整的计算加速产品矩阵。双方将从算法侧、架构侧、系统侧展开紧密合作。 中证报中证网讯(记者 郑萃颖)12月20日记者获悉,在北京中关村国际创新中心举办的首届MUSA开 发者大会上,图灵量子与国产GPU领军企业摩尔线程签署战略合作协议。双方将聚焦量子-经典混合计 算领域,围绕GPU加速量子计算模拟、经典-量子混合计算软硬件架构及生态构建、量子智算中心建设 以及行业解决方案联合推广等方向深度合作。 当前,量子-经典混合计算更已成为全球芯片厂商的核心发展共识与布局重点。此次图灵量子与摩尔线 程合作,旨在合力加速推动量子经典混合核心技术自主化,产业应用本土化,构建开放协同、自主可控 的计算新生态。 在架构侧,双方将联合研发GPU与量子处理器(QPU)协同的混合计算架构,构建跨区域、跨领域 的"量子+经典"异构云算力协作平台。 ...
高校院所成果转化不足5%
Di Yi Cai Jing Zi Xun· 2025-12-11 11:14
2025.12.11 本文字数:1702,阅读时长大约3分钟 作者 |第一财经 宁佳彦 张甜甜 封图 |AI生成 光子技术作为新一代未来信息技术的核心支撑,正广泛渗透到半导体、新能源、生物医药等下游产业。 去年1月,工信部等七部门联合印发《关于推动未来产业创新发展的实施意见》,其中提到,到2025 年,建设一批未来产业孵化器和先导区,突破百项前沿关键核心技术,形成百项标志性产品,初步形成 符合我国实际的未来产业发展模式。 "我们比历史上任何时候都更渴望科技成果转化。"张龙称,"高校院所每年科研经费高达近万亿,成果 转化率却不到5%,问题不在缺乏技术,而在缺乏'算法'。" 由于我国创新端与产业端长期分立发展,科技成果转化仍是"老大难"。长春理工大学教授、求是光谱创 始人姚治海在沙龙讨论中道出了市场端的残酷:"最好的技术并不一定就是能在市场上取得成功的技 术。技术的突破口要对准市场,这个'口子'才会打开。"这正是无数硬科技初创公司撞上的"南墙"。 张龙团队在杭州光机所实践了一套产业化"算法",想要打造科技成果的"吸聚—孵化—投资—转化"的生 态,其核心是科技成果的"选—育—嫁"逻辑。即采用理事会领导下的所长负责制 ...
高校院所成果转化不足5%
第一财经· 2025-12-11 10:19
Core Viewpoint - Photonic technology is emerging as a core support for future information technology, with significant applications in semiconductor, renewable energy, and biomedicine industries. The global photonics market is expected to grow explosively, reaching $1.2 trillion by 2027, driven by the surge in AI computing power demand [3][4]. Industry Overview - The global photonics market reached $920 billion in 2023, with projections indicating it will exceed $1.2 trillion by 2027. The growth is primarily fueled by the increasing demand for AI computing capabilities [3]. - The Chinese government aims to establish future industry incubators and pilot zones by 2025, focusing on breakthroughs in over a hundred key technologies and the development of significant products [3]. Technological Challenges - The current microelectronic chips are struggling to meet the demands for computing power and energy efficiency in the era of big data and AI. Photonic chips, which utilize photons for signal processing, are seen as a revolutionary solution for future computing, internet, and AI applications [4]. - The transformation of scientific research results into marketable technologies remains a significant challenge, with a conversion rate of less than 5% despite substantial annual research funding of nearly $1 trillion [4]. Innovation and Incubation Models - A new industrialization "algorithm" has been proposed, focusing on a systematic approach to technology transfer that includes selection, nurturing, and integration of scientific achievements into the market. This model has successfully incubated nearly 50 photonic technology startups, achieving an average project value increase of five times [5]. - The establishment of the Xihe Optoelectronics Industry Incubator in Shanghai represents a collaborative model involving government, research institutions, and capital investment, aimed at fostering innovation and entrepreneurship in the photonics sector [5]. Regional Development Initiatives - The Pudong New Area has developed the largest and most comprehensive photonics research facility cluster globally, providing robust support for scientific research. The 895 Incubator has invested in 20 projects with a total investment of approximately 700 million yuan, with five companies already listed [6]. - Shanghai's "Technology Innovation Action Plan" aims to cultivate a new generation of competitive technology companies, offering various support services including technology research and development, financial assistance, and talent training [6].
高校院所成果转化不足5% 问题出在哪里?
Di Yi Cai Jing· 2025-12-11 09:15
光子技术作为新一代未来信息技术的核心支撑,正广泛渗透到半导体、新能源、生物医药等下游产业。 据张龙介绍,近日,由上海国有资本投资有限公司、嘉定区人民政府、中国科学院上海光学精密机械研 究所三方共同打造的羲和光谷光电产业孵化器正式启用,标志着"政府搭台、科研驱动、资本赋能"合作 模式正式落地。该孵化器将通过"创新+创业+创投"的根据地孵化器模式,打造未来产业上海模式"孵育 体系",为上海建设具有全球影响力的科技创新高地贡献重要力量。 而在浦东新区,目前已经形成全球规模最大、种类最全、综合能力最强的光子大科学设施集群,为当下 科学家提供有力的科研硬件支撑。今年4月,新一期895创业营在浦东开启招募,重点聚焦"未来产业"提 供强大支撑的"智算"上。895创业营的背后是张江高科895孵化器,作为科技产业创新创业服务平台,多 年来,平台聚焦高科技硬核初创项目,助力科技创新企业加速发展。截至4月,895孵化器已累计投资20 个项目,投资金额约7亿元,其中5家企业已上市。 上海市研发公共服务平台管理中心副主任朱悦在互动交流中表示,应该深入研究培养科技创业人才的规 律和方法,推动科技成果转化效率和科技产业发展。去年10月,为 ...
230亿!Marvell 重大收购
Xin Lang Cai Jing· 2025-12-04 11:28
芯片制造商 Marvell 以 32.5 亿美元收购光子互连技术先驱 Celestial AI,交易含 10 亿现金及价值 22.5 亿的普通股,预计 2026 年 Q1 完成。 一、收购核心细节 交易结构:Celestial AI 将获得 10 亿美元现金,以及 2720 万股 Marvell 普通股(价值 22.5 亿美元),交易预计 2026 年第一季度完成。 收购目的:Celestial AI 是光子互连技术先驱,其技术用光信号替代电信号,连接 AI 芯片与内存芯片。Marvell 希望借此强化该领域竞争力,与博通、英 伟达展开竞争。 业绩预期:Celestial AI 预计 2028 财年下半年开始贡献可观收入,2028 财年第四季度年化营收达 5 亿美元,2029 财年第四季度翻倍至 10 亿美元。 二、Marvell 近期业绩与股价表现 营收数据:第三季度(截至 11 月 1 日)营收 20.7 亿美元,同比增 36.8%,符合分析师预期;预计第四季度营收约 22 亿美元(上下浮动 5%),高于分析 师 21.8 亿美元的平均预期。 股价情况:受 AI 芯片市场竞争加剧、华尔街对 AI 泡沫担忧 ...
单光子层面实现光束精准控制
Ke Ji Ri Bao· 2025-11-26 22:53
Core Insights - The research team from Purdue University has achieved precise control of light beams at the single-photon level, leading to the development of a "photon transistor" that operates at single-photon intensity, marking a significant step towards realizing the full potential of photonic technology [1][2]. Group 1: Technological Breakthrough - The photon transistor can operate stably at room temperature, unlike other quantum system-dependent solutions that require extremely low temperatures [2]. - It is compatible with existing complementary metal-oxide-semiconductor (CMOS) processes, allowing for seamless integration into current chip manufacturing workflows, laying the groundwork for future photonic chips [2]. - The operational speed of the photon transistor can reach gigahertz levels, with potential enhancements to several hundred gigahertz, significantly surpassing existing methods [2]. Group 2: Implications for Computing - This technology is expected to drive advancements in quantum computing and could revolutionize classical computing by enabling the construction of ultra-fast, low-power photonic computers [2]. - It has the potential to replace slower, more power-consuming electronic devices in data centers and optical communication systems [2][3]. - The ability to control single photons could lead to breakthroughs in quantum computing, overcoming existing bottlenecks and reshaping data center architectures for a new era of light-speed computing [3].