Workflow
法拉第效应
icon
Search documents
法拉第效应中光的磁场作用被揭示
Ke Ji Ri Bao· 2025-11-24 09:57
计算预测结果表明,若使用磁性材料铒镓石榴石重复法拉第实验,光的磁性作用对可见光穿过材料所产 生的法拉第效应贡献可达17%;若使用红外光,这一比例可高达70%。这一结果说明光与物质的"对 话"不仅通过电场进行,其磁场也是一个不可忽视的媒介,只是长期以来未被充分认识。 法拉第效应是指光在通过处于恒定磁场中的物质时,其偏振方向发生旋转的现象。自1845年英国科学家 迈克尔·法拉第发现该效应以来,科学界一直将其归因于光的电场与物质内部电荷的相互作用。而新研 究指出,长期以来被忽视的光的磁场,其实对这一效应产生了直接且可测量的贡献。 团队运用描述磁系统中自旋运动的朗道-利夫希兹-吉尔伯特方程进行精密计算,发现光的磁场能够在材 料内部诱发磁矩,其作用方式类似于静磁场。 以色列希伯来大学研究团队在11月19日出版的《科学报告》杂志发表论文,首次揭示了光的磁场在法拉 第效应中扮演着直接角色。这一发现打破了180年来科学界认为法拉第效应中"只有光的电场才重要"的 传统认知。 研究首次从理论层面证实:光的振荡磁场直接参与了法拉第效应的形成,表明光不仅能照亮物质,还能 通过其磁性对物质产生影响。这一突破性发现为光学、自旋电子学及量 ...
法拉第效应中光的磁场作用揭示
Ke Ji Ri Bao· 2025-11-21 00:45
Core Insights - The research team from Hebrew University of Jerusalem published a paper revealing that the magnetic field of light plays a direct role in the Faraday effect, challenging the long-held belief that only the electric field of light is significant [1][2]. Group 1: Research Findings - The study theoretically confirms that the oscillating magnetic field of light directly contributes to the formation of the Faraday effect, indicating that light can influence matter through its magnetic properties [1]. - The Faraday effect, discovered by Michael Faraday in 1845, involves the rotation of the polarization direction of light as it passes through a material in a constant magnetic field. The new research highlights the previously overlooked contribution of light's magnetic field [1]. - The research utilized the Landau-Lifshitz-Gilbert equation to conduct precise calculations, demonstrating that the magnetic field of light can induce magnetic moments within materials, similar to the effects of a static magnetic field [1]. Group 2: Experimental Predictions - Calculations predict that using magnetic materials like gadolinium gallium garnet in repeated Faraday experiments could show that the magnetic contribution of light to the Faraday effect can reach up to 17% for visible light and as high as 70% for infrared light [2]. - This finding suggests that the interaction between light and matter occurs not only through the electric field but also through the magnetic field, which has been underappreciated historically [2]. - Igor Rozhansky from the University of Manchester commented that the computational results are compelling and warrant further experimental validation, indicating potential new methods for scientists to control the internal spins of materials [2].