Workflow
混合训练微调
icon
Search documents
清华唐杰新作:大模型能打掼蛋吗?
量子位· 2025-09-10 10:01
Core Viewpoint - The research indicates that large models can effectively play various card games, demonstrating their capabilities in complex decision-making scenarios [2][4][52]. Group 1: Model Performance - Different models exhibit varying performance across different card games, with fine-tuned models showing superior results compared to API-based and base models [3][40]. - Among the API-based models, GPT-4o performs the best overall, while GLM-4 demonstrates strong capabilities in games like DouDizhu and GuanDan [39][40]. - Fine-tuned models, particularly GLM4-9B-Chat-mix, excel in multiple games, including DouDizhu, GuanDan, and Uno, indicating their versatility [42][40]. Group 2: Game Selection and Learning Methodology - The research team selected eight popular card games based on their complexity and the availability of high-quality models and data [8]. - The learning process involved generating high-quality interaction data through teacher models and opponents, allowing the large language models to learn effectively [14][16]. - The complexity of the games influenced the number of training instances collected, with more complex games like DouDizhu and GuanDan requiring larger datasets [20][21]. Group 3: Inter-Game Influence - The study found that models trained on similar games can enhance each other's performance, while those trained on games with significant rule differences may experience performance conflicts [52][49]. - For instance, models trained on GuanDan showed good performance in DouDizhu, suggesting a positive transfer of skills between these games [45]. Group 4: Generalization and Capability - The research indicates that while training on card games, the general capabilities of the models may decline, but this can be mitigated by incorporating general data into the training process [56][54]. - The mixed training approach allowed for some recovery of general capabilities, demonstrating the balance between specialized game skills and broader knowledge [56].