私有模型
Search documents
潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026
量子位· 2025-12-20 08:02
Core Viewpoint - The application of large models extends beyond chatbots and programming assistants, and their true value will be realized across various industries in the future [8]. Group 1: Types of Companies Needing Private Models - Three types of companies require industry-specific or private models: traditional large enterprises, small and medium-sized enterprises with vast amounts of data, and disruptive new companies [8][34]. - Traditional large enterprises often possess valuable industry-specific data [34]. - Small and medium-sized enterprises specializing in niche areas can leverage their data as a source for large models [35]. - Disruptive companies in sectors like finance, pharmaceuticals, and e-commerce are most likely to benefit from developing their own private models [35]. Group 2: Implementation Criteria - Companies that only handle daily office tasks or primarily text data do not need to develop private models and can utilize existing large model APIs [4][37]. - If a company has sufficient text data, it can implement a Retrieval-Augmented Generation (RAG) model combined with a large model API instead of building its own [38]. - Companies with vast multimodal data or stringent privacy requirements, such as those in oil exploration or pharmaceuticals, should consider developing a private model [38]. Group 3: Market Predictions - The large language model market is predicted to be divided into three segments: domain-specific LLMs, general-purpose LLMs, and private LLMs [39][41]. - By 2033, domain-specific models are expected to capture approximately 40% of the market share, while general-purpose and private models are projected to each hold around 30% [47]. Group 4: Training and Optimization - The key to successfully deploying large models for business is post-training or agentization, which differentiates models from standard APIs [42]. - Companies should focus on maximizing computational efficiency and developing effective fine-tuning templates to create their industry-specific models [43][44]. - The company has developed a fine-tuning SDK to facilitate the creation of private models, allowing users to focus on model and algorithm innovation [17][45]. Group 5: Real-World Applications - A world-renowned automotive company has utilized this technology to create a multimodal automated decision support system [53]. - A leading e-commerce company's autonomous driving business has significantly improved with the help of this technology [53]. - Another world-class automotive company has developed an intelligent cockpit model with assistance from this technology [53].