Workflow
肿瘤浸润淋巴细胞(TIL)
icon
Search documents
Science子刊:卞修武团队发现增强CAR-T细胞抗肿瘤效果的基因修饰策略
生物世界· 2025-10-25 08:00
Core Viewpoint - CAR-T cell therapy has shown significant efficacy in treating hematological malignancies, prompting research into its application for solid tumors, particularly glioblastoma multiforme (GBM), which presents unique treatment challenges due to its aggressive nature and lack of effective therapies [2][4]. Group 1: T Cell Exhaustion and Mechanisms - T cell exhaustion is a major barrier to the efficacy of CAR-T cell therapy in solid tumors, characterized by reduced proliferation, impaired effector function, and increased expression of inhibitory receptors [2][4]. - Recent advancements in single-cell RNA sequencing (scRNA-seq) have provided insights into the molecular mechanisms of T cell exhaustion, identifying key regulatory factors such as DNMT3A, SOX4, and PRDM1 that limit T cell anti-tumor activity [2][4]. Group 2: Research Findings on NR4A3 and FOS - A study published in Science Advances found that knocking down NR4A3 enhances CAR-T cell efficacy against malignant gliomas, but this effect diminishes due to T cell exhaustion induced by chronic antigen exposure [3][5]. - Enhancing FOS expression in NR4A3-deficient CAR-T cells can reverse T cell functional exhaustion, thereby maintaining tumor clearance capabilities and improving therapeutic efficacy [3][5][6]. Group 3: Implications for CAR-T Cell Therapy - The research highlights the critical role of NR4A3 in regulating T cell cytotoxicity and memory formation during early antigen exposure, suggesting a combined genetic modification strategy of NR4A3 knockdown and FOS overexpression to protect CAR-T cells from exhaustion [6][8]. - This dual modification approach could lead to sustained tumor clearance in solid tumors, offering a promising new strategy for optimizing CAR-T cell therapy in clinical settings [5][6].