语言能力

Search documents
AI重划语言能力边界,国际测评权威专家迈克•米兰诺维奇博士贵阳发声:人类核心能力与AI协作智能将分轨评估
Huan Qiu Wang Zi Xun· 2025-07-23 03:43
来源:美通社 米兰诺维奇博士提出"语言能力双轨进化论",动态命题技术破解安全性困局 迈克·米兰诺维奇博士在第八届英语教学与测评学术研讨会上发表主旨演讲 能力定义革命:从单一维度到双轨并行 米兰诺维奇博士用一组对比揭示行业剧变:当会议记录不再需要人工校对,当职场写作变成AI指令工 程,传统语言测试测量的'独立能力'正逐渐脱离现实土壤。他创造性地提出: 现代语言能力正裂变为两大支柱。第一支柱是人类核心能力,即无需科技辅助的基础语言素养,如精准 的词汇运用、严谨的语法结构,这些能力在学术研究、法律文书等场景中仍是不可替代的基石。第二支 柱是AI协作智能,特指人类驾驭人工智能工具实现沟通目标的进阶能力,包括精准的指令工程、多源 信息整合及机器输出优化等,正成为数字时代职场新通货。 "移民官员需要验证申请人掌握生存必需的核心能力,而跨国企业更需考察候选人指挥AI协同作战的智 慧——'语言能力'这一概念本身可能需要被重新审视。" "人工智能工具的迅猛发展,是否意味着我们正站在测评方式彻底变革的临界点——未来测评将不再聚 焦答案正确与否,而转向追踪解题所需的认知过程,并运用技术实现该过程?人工智能识别与追踪认知 流程的潜力 ...
vivo突破手机AI部署难题,绕开MoE架构限制,骁龙8 Elite流畅运行|ICCV 2025
量子位· 2025-07-03 09:00
GenieBlue团队 投稿 量子位 | 公众号 QbitAI 在AI迈入多模态时代的当下, "让大模型上手机" 成为产业落地的焦点。 现有MLLM在手机端部署时常面临两大难题: vivo AI研究院联合港中文以及上交团队 为了攻克这些难题, 从训练数据和模型结构两方面,系统性地分析了如何在MLLM训练中维持纯语言 能力,并基于此提出了GenieBlue——专为移动端手机NPU设计的高效MLLM结构方案。目前已被ICCV 2025接收。 主要贡献和技术亮点 1、现有端侧LLM在支持多模态功能后,纯语言任务准确率下降超10%。GenieBlue通过冻结原始LLM参数,并引入复制的Transformer层和 轻量化的LoRA模块,在多模态训练的过程中保留原始的语言能力。 2、通过大规模微调,GenieBlue达到与主流MLLM相媲美的多模态能力,并完全保留原始纯语言性能。 3、避开当前NPU不支持的MoE架构,采用不共享基座的推理策略。在搭载高通骁龙8 Elite(第四代)芯片的手机上实现流畅运行。 技术背景 1、当前的端侧MLLM无法取得令人满意的纯语言能力 在MATH(客观难题)、AlignBench和MT- ...
X @Yuyue
Yuyue· 2025-06-30 09:02
说几件想做但一直没开始做 / 没做好的事:1. 健身2. 语言能力进一步提升,包括英语、韩语、日语3. 考 CFA、考证券从业资格证身体是基础;语言能力是敲门砖,尤其是韩国现在 crypto 开放程度这么高,学会韩语应该会增加一定优势;考证是增加合规 + 政策放开之后的竞争力由于家里人在 A 股饿了十年,我时常在想如果我也一直做无业游民在加密饿十年会如何——想想山寨高手,别说饿十年了,A 股还能饿十年温饱,山寨高手饿十个月都已归零这种焦虑时常萦绕着我。依靠理财(尤其是 DeFi 挖矿)的风险较高,提升个人竞争力的需求已迫在眉睫不过你要是三个月后问我进度多少了,有可能大概率这个进度条还在 0% 😅 ...
聊过 200 个团队后的暴论:不要拿 AI 造工具,要建设「新关系」
Founder Park· 2025-06-24 08:31
Core Viewpoint - The era of AI allows a few individuals to create significant value for a vast audience, emphasizing the importance of community and collaboration among innovators [4][6]. Group 1: AI Native New Goals - The core of AI Native products is not merely creating new tools but establishing a new relationship between AI capabilities and humans [12][13]. - The emergence of system prompts signifies a shift in how products define their relationship with users, moving from traditional branding to embedding this relationship in the product's core [15][20]. - Emotional intelligence becomes a critical aspect of product design, as AI products must now manage user interactions with a higher degree of empathy [21][23]. Group 2: New Challenges and Opportunities - AI Native products face new challenges, such as enhancing emotional intelligence and creating a sense of life in products to foster deeper user relationships [24][26]. - The establishment of new relationships presents opportunities for mixed-value delivery, combining digital and physical interactions to enhance user engagement [30][32]. - New relationships can lead to innovative service distribution channels, allowing for continuous value delivery and higher user lifetime value (LTV) [42][46]. Group 3: AI Native New Pipeline - The new pipeline for AI Native products emphasizes broad input and liquid output, focusing on proactive sensing and flexible delivery of user needs [60][72]. - Broad input involves actively gathering diverse data to enhance understanding and value delivery, while liquid output encourages a collaborative journey with users rather than a one-time interaction [62][73]. Group 4: New Value Models - The value model in the AI Native era shifts from a flat, two-dimensional approach to a three-dimensional model that incorporates AI capabilities and user relationships [85][87]. - Successful entrepreneurs in this era recognize the dual responsibility of serving both users and AI, ensuring that product engineering aligns with AI's needs [82][84]. - Traditional product economics and management principles are becoming obsolete, necessitating new frameworks for understanding growth, value creation, and organizational structure [92][99].