通用近似器

Search documents
Sutton判定「LLM是死胡同」后,新访谈揭示AI困境
机器之心· 2025-10-15 07:33
Core Viewpoint - The article discusses Rich Sutton's critical perspective on large language models (LLMs), suggesting they may not align with the principles outlined in his work "The Bitter Lesson" and highlighting their limitations in learning from real-world interactions [1][3][22]. Group 1: Limitations of LLMs - Sutton argues that LLMs have significant flaws, particularly their inability to learn from ongoing interactions with the environment [3][21]. - He emphasizes that true intelligence should emerge from continuous reinforcement learning through dynamic interactions, rather than relying on extensive pre-training and supervised fine-tuning [3][4][22]. - The reliance on human knowledge and data in LLMs may lead to a lack of scalability and potential failure to meet expectations, as they are fundamentally limited by the biases present in the training data [24][25][26]. Group 2: Alternative Perspectives on Intelligence - Experts in the discussion, including Suzanne Gildert and Niamh Gavin, express skepticism about achieving pure reinforcement learning, suggesting that current systems often revert to imitation learning due to the difficulty in defining universal reward functions [7][11]. - The conversation highlights the need for systems that can autonomously learn in new environments, akin to how a squirrel learns to hide nuts, rather than relying solely on pre-existing data [8][10]. - There is a consensus that while LLMs exhibit impressive capabilities, they do not equate to true intelligence, as they lack the ability to explore and learn from their environment effectively [33][35]. Group 3: The Future of AI Development - The article suggests that the AI field is at a crossroads, where the dominance of certain paradigms may hinder innovation and lead to a cycle of self-limitation [28][29]. - Sutton warns that the current trajectory of LLMs, heavily reliant on human imitation, may not yield the breakthroughs needed for genuine understanding and reasoning capabilities [22][24]. - The discussion indicates a shift towards exploring more robust learning mechanisms that prioritize experience and exploration over mere data absorption [28][30].