风格迁移加速

Search documents
ACM MM 2025 | 小红书AIGC团队提出风格迁移加速算法STD
机器之心· 2025-08-04 07:05
本论文主要作者来自小红书 AIGC 团队(Dynamic-X-Lab),Dynamic‑X‑LAB 是一个专注于 AIGC 领域的研究团队,致力于推动姿态驱动的人像生成与视频动画 技术。他们以高质量、高可控性的生成模型为核心,围绕文生图(t2i)、图像生成(i2i)、图像转视频(i2v)和风格迁移加速等方向展开研究,并通过完整的开 源方案分享给开发者与研究者社区。 基于一致性模型(Consistency Models, CMs)的轨迹蒸馏(Trajectory Distillation)为加速扩散模型提供了一个有效框架,通过减少推理步骤来提升效率。然而,现 有的一致性模型在风格化任务中会削弱风格相似性,并损害美学质量 —— 尤其是在处理从部分加噪输入开始去噪的图像到图像(image-to-image)或视频到视频 (video-to-video)变换任务时问题尤为明显。 这一核心问题源于当前方法要求学生模型的概率流常微分方程(PF-ODE)轨迹在初始步骤与其不完美的教师模型对齐。这种仅限初始步骤对齐的策略无法保证整 个轨迹的一致性,从而影响了生成结果的整体质量。 为了解决这一问题,文章提出了 单轨 迹 蒸馏( ...