Workflow
AI evaluation
icon
Search documents
Strategies for LLM Evals (GuideLLM, lm-eval-harness, OpenAI Evals Workshop) — Taylor Jordan Smith
AI Engineer· 2025-07-27 16:15
LLM Evaluation Challenges - Traditional benchmarks often fail to reflect real-world LLM performance, reliability, and user satisfaction [1] - Evaluating reasoning quality, agent consistency, MCP integration, and user-focused outcomes requires going beyond standard benchmarks [1] - Benchmarks and leaderboards rarely reflect the realities of production AI [1] Evaluation Strategies & Frameworks - The industry needs tangible evaluation strategies using open-source frameworks like GuideLLM and lm-eval-harness [1] - Custom eval suites tailored to specific use cases are crucial for accurate assessment [1] - Integrating human-in-the-loop feedback is essential for better user-aligned outcomes [1] Key Evaluation Areas - Evaluating reasoning skills, consistency, and reliability in agentic AI applications is critical [1] - Validating MCP (Model Context Protocol) and agent interactions with practical reliability tests is necessary [1] - Agent reliability checks should reflect production conditions [1] Deployment Considerations - Robust evaluation is critical for confidently deploying LLMs in real-world applications like chatbots, copilots, or autonomous AI agents [1]