Agentic systems

Search documents
X @Avi Chawla
Avi Chawla· 2025-08-24 19:30
Core Concepts - LLMs like GPT and DeepSeek serve as the foundational engine powering Agentic AI [1] - AI Agents wrap around LLMs, granting them autonomous action capabilities and making them useful in real-world workflows [2] - Agentic systems emerge from combining multiple agents, enabling collaboration and coordination [3] Agentic Infrastructure - Agentic Infrastructure encompasses tokenization & inference parameters, prompt engineering, and LLM APIs [2] - Tool usage & function calling, agent reasoning (e g, ReAct), task planning & decomposition, and memory management are crucial components [3] - Inter-Agent communication, routing & scheduling, state coordination, and Multi-Agent RAG facilitate collaboration [4] - Agent roles & specialization and orchestration frameworks (e g, CrewAI) enhance workflow construction [4] Trust, Safety, and Scalability - Observability & logging (e g, using DeepEval), error handling & retries, and security & access control are essential for trust and safety [6] - Rate limiting & cost management, workflow automation, and human-in-the-loop controls ensure scalability and governance [6] - Agentic AI features a stacked architecture, with outer layers adding reliability, coordination, and governance [5]
X @Avi Chawla
Avi Chawla· 2025-08-24 06:33
Core Concepts - LLMs like GPT and DeepSeek power Agentic AI [1] - AI Agents wrap around LLMs, enabling autonomous action [2] - Agentic systems combine multiple agents for collaboration [2] Agentic Infrastructure - Observability & logging track performance using frameworks like DeepEval [2] - Tokenization & inference parameters define text processing [3] - Prompt engineering improves output quality [3] - Tool usage & function calling connect LLMs to external APIs [4] - Agent reasoning methods include ReAct and Chain-of-Thought [4] - Task planning & decomposition break down large tasks [4] - Memory management tracks history and context [4] Multi-Agent Systems - Inter-Agent communication uses protocols like ACP, A2A [5] - Routing & scheduling determines agent task allocation [5] - State coordination ensures consistency in collaboration [5] - Multi-Agent RAG uses retrieval-augmented generation [5] - Orchestration frameworks like CrewAI build workflows [5] Enterprise Considerations - Error handling & retries provide resilience [7] - Security & access control prevent overreach [7] - Rate limiting & cost management control resource usage [7] - Human-in-the-loop controls allow oversight [7]
Ship Production Software in Minutes, Not Months — Eno Reyes, Factory
AI Engineer· 2025-07-25 23:11
[Music] Hi everybody, my name is Eno. I really appreciate that introduction. Um, and maybe I can start with a bit of background.Uh, I started working on LLMs about two and a half years ago. uh when uh GBT3.5% was coming out and it became increasingly clear that agentic systems were going to be possible with the help of LLMs. . At factory we believe that the way that we use agents in particular to build software is going to radically change the field of software development. We're transitioning from the era ...