Encoder-Decoder架构
Search documents
谷歌版两门「小钢炮」开源,2.7亿参数干翻SOTA
3 6 Ke· 2025-12-19 06:17
Core Insights - Google has made significant advancements in the field of AI with the release of T5Gemma 2 and FunctionGemma, focusing on small models that can operate efficiently on edge devices [1][3][37] Group 1: T5Gemma 2 Overview - T5Gemma 2 is part of the Gemma 3 family and emphasizes architectural efficiency and multimodal capabilities, distinguishing itself from larger models like Gemini [3][4] - The model is available in three sizes: 270M, 1B, and 4B parameters, showcasing its versatility [5] - T5Gemma 2 outperforms corresponding models in the Gemma 3 series across various benchmarks, particularly in code, reasoning, and multilingual tasks [9][11] Group 2: FunctionGemma Overview - FunctionGemma is designed for function calling optimization, allowing it to run on mobile devices and browsers, making it suitable for applications like voice assistants and home automation [7][40] - The model has 270M parameters and is optimized for specific tasks, demonstrating that smaller models can achieve high performance in targeted areas [44][46] - FunctionGemma aims to transition AI from a conversational interface to an active agent capable of executing tasks and interacting with software interfaces [43][56] Group 3: Architectural Innovations - T5Gemma 2 represents a return to the encoder-decoder architecture, which is seen as a modernized revival of classical Transformer models, contrasting with the dominant decoder-only models like GPT [14][30] - The model's architecture allows for better handling of "hallucination" issues and provides inherent advantages in multimodal tasks [32][34] - Google employs a technique called "model adaptation" to efficiently train T5Gemma 2, leveraging existing models to reduce computational costs [36] Group 4: Strategic Implications - The release of these models reflects Google's strategic positioning in the AI landscape, particularly in mobile computing and edge AI, as it seeks to maintain control over the Android ecosystem [52][64] - FunctionGemma's design philosophy aims to democratize AI capabilities across various applications, making advanced functionalities accessible to developers without significant infrastructure costs [64] - By establishing a standard protocol for AI interactions with applications, Google is enhancing its competitive edge in the mobile AI market [57][58]