Iterative Learning Control (ILC)

Search documents
IJRR发表!中山大学研究团队提出Koopman-ILC系统,实现对连续体机器人数据驱动建模与迭代学习控制!
机器人大讲堂· 2025-06-29 03:53
目前 已有的基于 Koopman算子的方法难以补偿不确定性和干扰,导致训练与现实之间的差距,从而造成性 能不佳。由于连续机器人天生的易受干扰性,这一差距很容易在实际场景中削弱其任务空间性能。 连续机器人控制中的鲁棒性与泛化能力 同时, 机器人可能需要在训练过程中未覆盖的区域进行操作,而且连续机器人的结构多样性进一步增加了控 制的复杂性。此外,现有基于 Koopman算子的控制方法的收敛性和鲁棒性尚未从理论或实验角度得到验证。 因此, 开发一种具有显著增强的鲁棒性、高计算效率、强泛化能力和严谨理论分析的数据驱动控制算法,对 于连续机器人而言至关重要 。 连续体机器人在近几十年受到了越来越多的关注。它们的柔顺性和灵活性使其在医疗、工业、农业和航空航天 等诸多领域具有重要应用价值。充分发挥其能力需要设计有效、高效且可靠的控制系统,而由于其结构复杂 性,这一任务仍然具有很大的挑战。 传统的连续体机器人控制方法通常依赖于对机器人物理模型的精确建模。然而,由于其柔性结构和不规则形 态,连续体机器人的建模极其困难,且容易受到环境影响,导致模型难以准确反映机器人的实际动态行为。因 此,研究人员转向了数据驱动的控制方法,尤其是 ...