Workflow
JSON
icon
Search documents
12-Factor Agents: Patterns of reliable LLM applications — Dex Horthy, HumanLayer
AI Engineer· 2025-07-03 20:50
Core Principles of Agent Building - The industry emphasizes rethinking agent development from first principles, applying established software engineering practices to build reliable agents [11] - The industry highlights the importance of owning the control flow in agent design, allowing for flexibility in managing execution and business states [24][25] - The industry suggests that agents should be stateless, with state management handled externally to provide greater flexibility and control [47][49] Key Factors for Reliable Agents - The industry recognizes the ability of LLMs to convert natural language into JSON as a fundamental capability for building effective agents [13] - The industry suggests that direct tool use by agents can be harmful, advocating for a more structured approach using JSON and deterministic code [14][16] - The industry emphasizes the need to own and optimize prompts and context windows to ensure the quality and reliability of agent outputs [30][33] Practical Applications and Considerations - The industry promotes the use of small, focused "micro agents" within deterministic workflows to improve manageability and reliability [40] - The industry encourages integrating agents with various communication channels (email, Slack, Discord, SMS) to meet users where they are [39] - The industry advises focusing on the "hard AI parts" of agent development, such as prompt engineering and flow optimization, rather than relying on frameworks to abstract away complexity [52]