Workflow
kHz-速率扭矩反馈控制
icon
Search documents
人形机器人优雅漫步,强化学习新成果!独角兽Figure创始人:之前大家吐槽太猛
量子位· 2025-03-26 10:29
Core Viewpoint - The article highlights the advancements in humanoid robots, particularly focusing on Figure's new model, which utilizes reinforcement learning to achieve more natural walking patterns, resembling human movement more closely [3][4][22]. Group 1: Technological Advancements - Figure's new humanoid robot, Figure 02, demonstrates significant improvements in walking, appearing more human-like with a lighter gait and faster speed [4][6]. - The walking control system is trained using reinforcement learning, which allows the robot to learn how to walk like a human through simulated trials [9][14]. - The training process involves high-fidelity physical simulations, enabling the collection of years' worth of data in just a few hours [10][14]. Group 2: Simulation Techniques - The training incorporates domain randomization and high-frequency torque feedback to bridge the gap between simulation and real-world application, allowing the learned strategies to be applied directly to physical robots without additional adjustments [11][18]. - The robots are exposed to various scenarios during training, learning to navigate different terrains and respond to disturbances [15][18]. Group 3: Future Plans and Industry Context - Figure plans to expand this technology to thousands of Figure robots, indicating a significant scaling of their operations [21]. - The article notes a broader trend in the industry, with many companies, including Vivo, launching their own robotics initiatives, reflecting a growing interest in humanoid robots [24][25].