兴趣教育
Search documents
及象教育荣获2025环球趋势“年度文化赋能优秀案例”,以人文滋养焕发银龄价值
Sou Hu Wang· 2026-01-07 01:33
作为推动行业创新的重要平台,环球趋势大会历经多届沉淀,已发展成为跨领域交流合作的核心平台。 本届环球趋势案例评选经过企业申报、专家多轮评议与社会影响力调研等环节,从众多国内外实践中严 格遴选而出。及象教育此次入选,表明其在银发群体兴趣教育领域的创新,不仅呼应了文化老龄化的国 家战略,也为银发经济的高质量发展提供了具有前瞻性的实践参考。 面对这一现实,及象教育自2020年成立起,便致力于重构银发兴趣教育的供给方式。平台不仅围绕书 画、声乐等多领域构建了系统化课程体系,借助线上教学突破时空限制,以"直播互动+社群伴学"为核 心,营造沉浸式课堂与陪伴式环境;更积极将学习体验延伸至线下,多次举办学员作品展、声乐交流沙 龙等,让银发学员在真实场景中展示所学、结识同好,实现从虚拟陪伴到现实联结,打造线上线下融合 的学习闭环,增强学员的互动感、成就感与归属感。 这种全方位的学习支持系统,使得及象逐步形成了稳定有效的教学服务体系,逐步探索出一条以教育为 载体、以文化赋能为核心的实践路径。课程始终坚持文化融合与教学方式的持续创新,提升知识传递的 效率,更注重激发银发群体在文化传承中的主体性,学员从单纯的知识接收者逐步成长为传统 ...
简知科技“简智AI大模型”通过国家级生成式人工智能服务备案
Huan Qiu Wang Zi Xun· 2025-10-31 10:43
Core Insights - JianZhi Technology's "JianZhi AI Model" has successfully passed the national generative artificial intelligence service filing, marking a significant step in compliance and operational capability in the AI education sector [1][2] - The model is designed for diverse interest learning scenarios, providing personalized recommendations and structured learning paths for users at different stages of interest development [2][3] - The comprehensive application of the "JianZhi AI Model" strengthens the company's product differentiation and serves as a practical example of deep AI integration in lifelong learning [3] Company Overview - JianZhi Technology is recognized as a national high-tech enterprise and a specialized and innovative small and medium-sized enterprise in Guangdong, with a brand matrix that spans from children to adults [2] - The company has served over 40 million users across its platforms, emphasizing its commitment to technology-driven personal growth and interest skill learning [6] Industry Context - The interest education sector is evolving into a three-pronged driving force of content, technology, and ecosystem, where quality content retains users, AI technology enables scalability and personalization, and learning communities enhance long-term value [3] - The company aims to deepen technological innovation and service integration, focusing on optimizing model capabilities and enhancing the overall learning experience [6]