Workflow
核物理研究
icon
Search documents
氘核及其反物质粒子形成之谜揭示
Ke Ji Ri Bao· 2026-01-03 08:25
德国慕尼黑工业大学等机构科学家借助欧洲核子研究中心大型强子对撞机(LHC)的内部碰撞,揭 示了氘核及其反物质粒子形成的奥秘。研究表明,这些脆弱的原子核并非诞生于宇宙大爆炸之初的混沌 状态,而是源自冷却"火球"内"超短命"高能粒子的衰变。这一进展标志着人类向深入理解强核力前进了 一大步。相关成果发表于新一期《自然》杂志。 ALICE致力于解析强核力的作用机制,其功能如同一台巨型相机,能够追踪并重建单次碰撞产生的 多达2000个粒子。借此,科学家得以重演宇宙早期景象,探索夸克与胶子的炽热混合物如何逐步演化为 稳定的原子核,并最终构成万物。 团队表示,此项发现对基础核物理研究意义深远,不仅推动了对强核力的理解,也拓展了宇宙学研 究的视野——轻原子核同样形成于宇宙射线相互作用中,甚至可能为探索暗物质提供线索。基于新发 现,科学家可进一步完善粒子形成模型,从而更可靠地解读宇宙观测数据。 长期以来,科学家一直困惑:仅由一个质子和一个中子经强核力结合而成的氘核,为何能在如此高 温下存在?按理说,在极端条件下,这类轻原子核应瞬间瓦解,但实验却持续观测到它们的身影。 最新研究中,团队依托LHC上的大型离子对撞机实验(ALICE ...
氘核及其反物质粒子形成之谜揭示 向深入理解强核力前进一大步
Ke Ji Ri Bao· 2025-12-31 00:40
德国慕尼黑工业大学等机构科学家借助欧洲核子研究中心大型强子对撞机(LHC)的内部碰撞,揭示了 氘核及其反物质粒子形成的奥秘。研究表明,这些脆弱的原子核并非诞生于宇宙大爆炸之初的混沌状 态,而是源自冷却"火球"内"超短命"高能粒子的衰变。这一进展标志着人类向深入理解强核力前进了一 大步。相关成果发表于新一期《自然》杂志。 强核力是维系原子核内质子与中子结合的基本力量,是自然界中四种基本力之一。 在LHC内部,质子以接近光速的速度相互碰撞,重现了类似大爆炸后不久的极端环境,创造了独一无二 的高温高能条件,使科学家能从最微观层面探索物质本质,验证自然基本规律。 长期以来,科学家一直困惑:仅由一个质子和一个中子经强核力结合而成的氘核,为何能在如此高温下 存在?按理说,在极端条件下,这类轻原子核应瞬间瓦解,但实验却持续观测到它们的身影。 最新研究中,团队依托LHC上的大型离子对撞机实验(ALICE)发现:当寿命极短的高能粒子发生衰变 时,会释放出构成氘核等微小核所需的质子和中子。这些粒子一旦释放,便有机会结合形成氘核。同样 的机制也解释了反氘核等反物质的产生。数据显示,约90%观测到的(反)氘核均源于这一新发现的过 程 ...
【科技日报】科研人员首次在实验中观测到新核素铝-20
Ke Ji Ri Bao· 2025-08-05 01:15
Core Insights - The research team from the Institute of Modern Physics of the Chinese Academy of Sciences has made significant progress in the study of rare decay modes of atomic nuclei, successfully observing the new nuclide aluminum-20 and its decay through a rare three-proton emission mode [1][2] Group 1: Research Findings - Over 3,300 nuclides have been discovered, with fewer than 300 being stable nuclides found in nature; the rest are unstable and undergo radioactive decay [1] - The study utilized the fragment separator at the Helmholtz Institute and employed in-flight decay experimental techniques to measure the angular correlations of decay products from aluminum-20 [2] - Aluminum-20 is the lightest aluminum isotope discovered experimentally, located outside the proton drip line and lacking seven neutrons compared to stable aluminum isotopes [2] Group 2: Theoretical Implications - The research team applied the Gamow shell model and Gamow coupling method for theoretical calculations, successfully reproducing the measured decay energy of aluminum-20 and predicting its ground state spin-parity [2] - The study explored the isospin symmetry between aluminum-20 and its mirror nucleus nitrogen-20, revealing a breaking of this symmetry, which is significant for nuclear structure research [2]
小型装置探测到罕见中微子散射效应
news flash· 2025-07-30 22:16
Core Insights - The research team at the Max Planck Institute for Nuclear Physics (MPIK) in Germany has made a significant advancement in the field of neutrino detection by successfully detecting neutrino scattering effects using a small detector weighing less than 3 kilograms [1] Group 1 - The successful detection of neutrino scattering represents a key milestone in neutrino detection technology [1]
【科技日报】原子核质量测量发现新质子幻数
Ke Ji Ri Bao· 2025-07-22 00:55
Core Insights - The research team from the Institute of Modern Physics, Chinese Academy of Sciences, successfully measured the mass of the rare neutron-deficient nucleus silicon-22, discovering that the proton number 14 is a new magic number [1][2] Group 1: Research Findings - The team utilized an improved magnetic rigidity identification technique at the Lanzhou Heavy Ion Accelerator Cooling Storage Ring to measure the ground state mass of silicon-22, enhancing the precision of previous measurements of silicon-23 by nearly seven times [2] - The new mass data revealed the existence of the new proton magic number 14 in silicon-22, supported by advanced nuclear theoretical models [2] - The study found that while silicon-22 exhibits a double magic characteristic similar to oxygen-22, there is a slight symmetry breaking in its structure compared to oxygen-22 [2] Group 2: Historical Context - Magic numbers are specific numbers of protons or neutrons that confer stability to atomic nuclei, with known magic numbers including 2, 8, 20, 28, 50, 82, and 126 [1] - The concept of magic numbers was introduced in the 1940s and 1950s by physicists such as Mayer and Jensen, who received the Nobel Prize in Physics in 1963 for their work on the shell model of atomic nuclei [1]