超导材料研究
Search documents
我科学家创造镍基超导体转变温度新纪录
Ke Ji Ri Bao· 2025-12-04 00:48
该团队还首次发现"晶格畸变越大,超导温度越高"的关键规律。基于此规律,该团队创造了全球最高镍 基超导体转变温度纪录——96K(-177.15℃)。 张俊杰表示,该成果的核心价值在于团队的原创贡献:"常压助熔剂法"打破高压依赖,提供了低成本、 易推广的单晶制备方案;"晶格畸变-Tc"规律刷新了镍基高温超导转变温度纪录,为合成更高Tc的镍基 高温超导材料提供了有效思路。 (文章来源:科技日报) 记者3日从山东大学获悉,该校晶体材料全国重点实验室张俊杰教授、陶绪堂教授团队联合多个团队在 镍基超导研究取得重要突破:他们开发了一种新镍基超导体,创下该类材料超导转变温度(Tc)的最高 纪录。相关研究当日刊发于国际期刊《自然》。 作为高温超导体系"新贵",镍基氧化物研究仍面临两大挑战:一是体块单晶依赖高压制备;二是最高超 导转变温度仅83K(-190.15℃),远低于铜基超导体的164K(-109.15℃)。 为了设计与合成更高Tc的镍基高温超导体,研究团队首创常压助熔剂法,以碳酸钾为助熔剂,在常压下 成功生长了系列双层镍氧化物单晶。测试表明,单晶具有良好的成分均匀性和高的晶体质量,为高温超 导机理研究提供了优质材料平台。 ...
“魔角”石墨烯中发现非常规超导关键证据
Ke Ji Ri Bao· 2025-11-09 01:11
Core Insights - The research from MIT physicists provides crucial evidence for unconventional superconductivity in twisted trilayer graphene (MATTG), advancing the goal of achieving room-temperature superconductivity [1][2] - Room-temperature superconductivity could lead to innovations such as zero-energy transmission cables, efficient power grids, and practical quantum computing systems [1] Group 1: Research Findings - MATTG exhibits unique quantum properties due to its specific twisting angle, which has led to the emergence of a new research field known as "twisted electronics" [1] - The recent experiments combined electron tunneling measurements with electrical transport tests, revealing a superconducting energy gap only when the material is in a zero-resistance state [1] - Further temperature and magnetic field tests indicated a distinct "V"-shaped curve for the energy gap in MATTG, contrasting with the smooth, symmetric shape typically seen in conventional superconductors [2] Group 2: Implications for Future Research - The findings suggest that the electron pairing mechanism in MATTG differs fundamentally from traditional superconductors, potentially due to strong electron interactions rather than lattice vibrations [2] - The new experimental platform allows real-time observation of the formation and evolution of superconducting energy gaps in two-dimensional materials, providing a novel method for studying electron pairing mechanisms [2] - Future research will explore more twisted structures and materials, aiming to uncover the essence of electron pairing and quantum state competition, which could inform the design of new efficient superconductors and quantum computing materials [2]