Workflow
人类反馈强化学习(RLHF)
icon
Search documents
清华、上海AI Lab等顶级团队发布推理模型RL超全综述
具身智能之心· 2025-09-15 00:04
Core Viewpoint - The article discusses the significant advancements in Reinforcement Learning (RL) for Large Reasoning Models (LRM), emphasizing its potential to enhance reasoning and logical thinking capabilities in AI systems through verifiable reward mechanisms and advanced optimization algorithms [4][8][19]. Group 1: Introduction to RL and LRM - Reinforcement Learning (RL) has been a crucial method in AI development since its introduction by Sutton in 1998, enabling agents to learn in complex environments through clear reward signals [4]. - The emergence of large models has provided a new platform for RL, initially used to align models with human preferences, and now evolving towards enhancing reasoning capabilities [5][6]. Group 2: Recent Trends and Challenges - A new trend is emerging where researchers aim to use RL not just for compliance but to genuinely enhance reasoning abilities in models, leading to the development of LRM systems [5][6]. - Significant challenges remain for the large-scale application of RL in LRM, including reward design, algorithm efficiency, and the need for substantial data and computational resources [6][8]. Group 3: Key Developments and Milestones - The article highlights key milestones in RL applications for LRM, such as OpenAI's o1 and DeepSeek-R1, which demonstrate the effectiveness of RL in achieving long-chain reasoning capabilities through verifiable rewards [13][15]. - The performance of models like o1 improves with additional RL training and increased computational resources during reasoning, indicating a new path for expansion beyond pre-training [13][15]. Group 4: Foundational Components and Problems - The foundational components of RL for LRM include reward design, policy optimization, and sampling strategies, which are essential for enhancing model capabilities [16]. - The article discusses foundational and controversial issues in RL for LRM, such as the role of RL, the comparison between RL and supervised fine-tuning (SFT), and the types of rewards used [16]. Group 5: Training Resources and Applications - Training resources for RL include static corpora, dynamic environments, and infrastructure, which need further standardization and development for effective use [16]. - The applications of RL span various tasks, including coding, agentic tasks, multimodal tasks, and robotics, showcasing its versatility [16][18]. Group 6: Future Directions - Future research directions for RL in LLMs include continual RL, memory-based RL, and model-based RL, aiming to enhance reasoning efficiency and capabilities [18]. - The exploration of new algorithms and mechanisms is crucial for advancing RL's role in achieving Artificial Superintelligence (ASI) [15][19].