北京同步辐射装置(BSRF)

Search documents
科学与健康|以光为“尺”探索物质微观结构!我国首台高能同步辐射光源今年底试运行
Xin Hua She· 2025-07-23 11:12
Core Insights - The first generation of synchrotron radiation source in China, the Beijing Synchrotron Radiation Facility (BSRF), has been reopened, while the construction of the world's highest brightness fourth-generation synchrotron radiation source (HEPS) is expected to be completed by the end of 2025, ready for trial operation [2][3][7] Group 1: Synchrotron Radiation Source Overview - The basic principle of synchrotron radiation sources involves accelerating electrons to produce light, which is utilized to explore the microstructure and evolution mechanisms of materials [3][5] - BSRF has been operational since 1990, providing high-quality synchrotron radiation across a range of applications, including aerospace, energy, environment, and biomedicine [3][4] - The facility has contributed to significant research outcomes, such as the molecular structure analysis of the SARS virus protein and the molecular mechanism of arsenic in leukemia treatment [3][8] Group 2: Fourth-Generation Synchrotron Radiation Source (HEPS) - HEPS, designed to emit the brightest light on Earth, will support advanced experimental methods such as nano-probing and ultra-high time resolution, enhancing the study of material microstructures under real conditions [5][7] - The HEPS project has completed the construction of the accelerator and beamlines, with all 15 beamlines operational, and aims to expand to 90 beamlines to maximize its capabilities [7][9] - The fourth-generation source is expected to significantly improve the quality and efficiency of microstructure analysis, aiding in the development of new materials and drug discovery [8][9] Group 3: Future Developments and Collaborations - The BSRF will retain 8 beamlines post-upgrade and continue to operate in a shared light mode, ensuring ongoing access for research institutions and universities [4][9] - The HEPS team is actively engaging with various research institutions and enterprises to gather experimental proposals and major R&D needs, aiming to align scientific demands with the facility's capabilities [9] - The focus will be on addressing national priorities and industrial innovation while fostering international collaboration and a user-friendly environment [9]
中国同步辐射光源为重大研发提供有力支撑
Ke Ji Ri Bao· 2025-07-23 00:55
作为中国首个、全球设计亮度最高的第四代同步辐射光源,HEPS能产生穿透力超强的高能X光, 并提供多种尖端探测手段。这将使科学家能在真实环境下,实时、精准地观察物质内部微小结构的变化 过程,开展更灵敏、更精细、更快速、更复杂以及更接近实际工作环境的研究。 潘卫民强调,在BSRF已有成果的基础上,HEPS将瞄准国家重大需求、工业创新和科学前沿,切实 发挥高能同步辐射光源的不可替代作用。"共同探讨谋划BSRF、HEPS运行机制和未来发展,是第一代 光源和第四代光源的接力奔跑。"潘卫民说。 中国科学院高能所研究员、HEPS常务副总指挥董宇辉介绍,为让HEPS尽快发挥效能,HEPS团队 在确保设备达标验收的同时,积极对接科研院所和龙头企业,提前征集开机后的实验方案与重大研发需 求,并用这些实际需求指导设备调试,确保装置建成即能满足用户所需,力争早出、多出好成果。 要理解这些装置的价值,就得弄清楚同步辐射光源的核心原理:让电子高速运动,从而发出强光。 这束光经过光束线的"加工提纯",变成高品质光源,提供给航空、医药、能源、环境等众多领域的科学 家。它如同"超级显微镜"和"精密尺子",帮助科学家看清物质内部的微小结构和变化 ...