地质灾害智能监测系统
Search documents
可实时预警岩体微小变化!深大团队研发地质灾害防治系统
Nan Fang Du Shi Bao· 2025-10-21 07:57
Core Viewpoint - The research team led by Professor Huang Hui from Shenzhen University has developed a new generation of intelligent monitoring system for geological disasters, which integrates computer vision, deep learning, and cloud-edge-end collaborative technology, transforming traditional point-based monitoring into comprehensive and intelligent monitoring [1][3]. Group 1: Traditional Monitoring Limitations - Traditional geological disaster monitoring methods rely heavily on embedded sensors and manual inspections, which have significant limitations [3]. - Sensors can only monitor preset points and cannot cover entire risk areas, while manual inspections are constrained by weather and terrain, making many dangerous areas inaccessible [3]. Group 2: Technological Innovations - The team proposed a core graphic information "cloud-edge-end" collaborative processing technology, achieving a transition from point monitoring to comprehensive prevention [3]. - The system utilizes a combination of computer graphics, computer vision, and deep learning, with breakthroughs in three key technical areas: effective capture of abnormal movements in monitored areas, over 85% accuracy in identifying rockfall events, and high-precision measurement of target displacement [3]. Group 3: Application and Impact - The system has demonstrated its application value in various scenarios, including 24-hour monitoring of tunnel entrances and high slope sections on mountain roads, rockfall disaster warnings for railways, stability monitoring in open-pit mining, and ensuring the safety of slopes in water conservancy projects [5]. - It has been implemented in Shenzhen's Jiangangshan Park, providing continuous monitoring and alarm for dangerous rocks and rockfalls [5]. - The monitoring device is equipped with a large-capacity solar power system for uninterrupted operation, showcasing strong environmental adaptability and energy self-sufficiency [5]. - The system captures minute changes in rock formations using high-resolution cameras and analyzes data in real-time with built-in intelligent algorithms, triggering multi-level alerts and uploading data to a cloud management platform via 4G/5G networks [5]. - This technology marks a shift from passive waiting to proactive prediction in geological disaster monitoring and early warning, entering a new phase of "full-domain perception, intelligent deduction, and precise warning" [5].