Workflow
Gemini智驾大模型
icon
Search documents
业内团队负责人对Waymo基座模型的一些分析
自动驾驶之心· 2025-12-22 00:42
Core Insights - Waymo's latest blog discusses advancements in safety validation and explainability methods under a new end-to-end paradigm, the operational framework of its large-scale driving model, and the data flywheel concept [2][4][8] Group 1: Safety Validation and Explainability - The safety validation and explainability methods are closely tied to Waymo's foundational model, which operates on a dual system: a fast system focused on perception and a slow system based on a Vision-Language Model (VLM) [2][4] - The VLM is designed for complex semantic reasoning, utilizing rich camera data and fine-tuned on Waymo's driving data to handle rare and complex scenarios, such as navigating around a vehicle on fire [4][5][7] Group 2: Data Flywheel Concept - Waymo's data flywheel consists of an inner loop based on reinforcement learning for simulation-validation-vehicle integration and an outer loop based on real vehicle testing [8][11] - The insights from the data flywheel emphasize the importance of vehicle data mining and the reliance on world model-based generative simulations [12] Group 3: Foundation Model Applications - The foundational model serves three main purposes, including vehicle data extraction, cloud simulation, and evaluation for safety and explainability under the new paradigm [6][11] - The model's architecture allows for the transformation of vehicle trajectory prediction into a next-token prediction task, leveraging large language models for enhanced performance [5][11]