Grasp Any Region (GAR)

Search documents
 超越英伟达Describe Anything!中科院 & 字节联合提出「GAR」,为DeepSeek-OCR添砖加瓦
 量子位· 2025-10-28 05:12
 Core Insights - The article discusses the innovative approach "Vision as Context Compression" proposed by DeepSeek-OCR, focusing on using OCR capabilities to compress documents through images [1] - The collaboration between the Chinese Academy of Sciences and ByteDance introduces "Grasp Any Region" (GAR), which explores the potential of natural images as a means of text compression [2] - GAR's precise region captioning capability is highlighted as a potential pathway for constructing dense captions for natural images [4]   Summary by Sections  GAR Capabilities - GAR possesses three main abilities: accurately describing user-specified regions, modeling relationships between multiple regions, and performing complex combinatorial reasoning [5][7] - The model allows users to provide various visual prompts and instructions for precise understanding of specific regions [9][10]   Importance of Region MLLMs - Region MLLMs differ from traditional MLLMs by enabling fine-grained, interactive understanding of image/video content [8] - The article emphasizes the challenge of evaluating full-image captions, while region captions can be objectively assessed based on color, texture, shape, and material [12]   Trade-off Between Local and Global Information - The article discusses the dilemma faced by Region MLLMs in balancing local details and global context [15] - Examples are provided to illustrate how GAR outperforms other models like DAM in accurately identifying and describing specified regions [18][19]   Model Design and Mechanism - GAR's design follows the principle of achieving fine-grained understanding while retaining global context [39] - The introduction of a lightweight prompt encoding mechanism and RoI-Aligned Feature Replay allows for high-fidelity feature extraction from specified regions [46][49]   Data Pipeline and Training - The training process involves multiple stages to enhance recognition capabilities and support multi-region associative reasoning [57][59][61] - The creation of GAR-Bench aims to systematically evaluate the region-level understanding capabilities of multimodal large language models (MLLMs) [64]   Performance Evaluation - GAR models demonstrate superior performance in various benchmark tests, achieving high scores in both single-region and multi-region understanding tasks [71][74] - The results indicate GAR's effectiveness in generating rich, accurate, and detailed local descriptions, establishing it as a state-of-the-art solution [77]   Zero-shot Transfer to Video Tasks - GAR's capabilities extend to video tasks, showing strong performance in zero-shot settings, even surpassing models specifically trained for video [79] - The article concludes with the potential applications of GAR in training multimodal understanding models and enhancing complex text instruction adherence [80][81]

