HOPE架构
Search documents
LLM 语境下,「持续学习」是否是 「记忆」 问题的最优解?
机器之心· 2025-11-16 01:30
Group 1 - The article discusses the concept of "Nested Learning" proposed by Google, which aims to address the memory management issues in LLMs (Large Language Models) and the challenges of catastrophic forgetting [5][6][8] - Nested Learning is presented as a multi-layered optimization problem, where models are seen as a series of interconnected sub-problems, allowing for the simultaneous learning of new skills while avoiding the loss of previously acquired knowledge [6][7] - The research introduces the "Continuous Memory System" (CMS), which treats memory as a system of multiple modules that update at different frequencies, enhancing the model's ability to manage memory effectively [6][7] Group 2 - The article highlights the importance of improving LLMs' memory capabilities to enable continual learning, allowing AI to retain contextual experiences, semantic knowledge, and procedural skills [8] - A proposed three-layer memory architecture includes Model Weights for general knowledge, KV Cache for intermediate results, and Context for relevant background information, facilitating appropriate responses from the model [8]