Nested Learning
Search documents
谷歌刚掀了模型记忆的桌子,英伟达又革了注意力的命
3 6 Ke· 2026-01-20 01:12
Core Insights - Google's Nested Learning has sparked a significant shift in the understanding of model memory, allowing models to change parameters during inference rather than being static after training [1][5] - NVIDIA's research introduces a more radical approach with the paper "End-to-End Test-Time Training for Long Context," suggesting that memory is essentially learning, and "remembering" equates to "continuing to train" [1][10] Group 1: Nested Learning and Test-Time Training (TTT) - Nested Learning allows models to incorporate new information into their internal memory during inference, rather than just storing it temporarily [1][5] - TTT, which has roots dating back to 2013, enables models to adapt their parameters during inference, enhancing their performance based on the current context [5][9] - TTT-E2E proposes a method that eliminates the need for traditional attention mechanisms, allowing for constant latency regardless of context length [7][9] Group 2: Memory Redefined - Memory is redefined as a continuous learning process rather than a static storage structure, emphasizing the importance of how past information influences future predictions [10][34] - The TTT-E2E method aligns the model's learning objectives directly with its ultimate goal of next-token prediction, enhancing its ability to learn from context [10][16] Group 3: Engineering Stability and Efficiency - The implementation of TTT-E2E incorporates meta-learning to stabilize the model's learning process during inference, addressing issues of catastrophic forgetting and parameter drift [20][22] - Safety measures, such as mini-batch processing and sliding window attention, are introduced to ensure the model retains short-term memory while updating parameters [24][25] Group 4: Performance Metrics - TTT-E2E demonstrates superior performance in loss reduction across varying context lengths, maintaining efficiency even as context increases [27][29] - The model's ability to learn continuously from context without relying on traditional attention mechanisms results in significant improvements in prediction accuracy [31][34] Group 5: Future Implications - The advancements in TTT-E2E suggest a shift towards a more sustainable approach to continuous learning, potentially becoming a leading solution in the industry for handling long-context scenarios [34][35] - This approach aligns with the growing demand for models that can learn and adapt without the high computational costs associated with traditional attention mechanisms [33][34]