Workflow
Physical Simulators (Webots
icon
Search documents
南大等8家单位,38页、400+参考文献,物理模拟器与世界模型驱动的机器人具身智能综述
机器之心· 2025-07-15 05:37
Core Insights - The article emphasizes the significance of "Embodied Intelligence" in the pursuit of Artificial General Intelligence (AGI), highlighting the need for intelligent agents to perceive, reason, and act in the physical world [5] - The integration of physical simulators and world models is identified as a promising pathway to enhance the capabilities of robots, enabling them to transition from mere action execution to cognitive processes [5] Summary by Sections 1. Introduction to Embodied Intelligence - Embodied Intelligence focuses on intelligent agents that can autonomously perceive, predict, and execute actions in complex environments, moving towards AGI [5] - The combination of physical simulators and world models is crucial for developing robust embodied intelligence [5] 2. Key Contributions - The paper systematically reviews the advancements in learning embodied intelligence through the integration of physical simulators and world models, analyzing their complementary roles in enhancing autonomy, adaptability, and generalization of intelligent agents [5] 3. Robot Capability Classification - A five-level capability classification system (IR-L0 to IR-L4) is proposed, covering autonomy, task handling, environmental adaptability, and social cognition [9][10] - IR-L0: Basic execution with no environmental perception - IR-L1: Rule-based response in closed environments - IR-L2: Perceptual adaptation with basic path planning - IR-L3: Human-like collaboration with emotional recognition - IR-L4: Full autonomy with self-generated goals and ethical decision-making [15] 4. Review of Core Robot Technologies - The article reviews the latest technological advancements in legged locomotion, manipulation control, and human-robot interaction [11][16] 5. Comparative Analysis of Physical Simulators - A comprehensive comparison of mainstream simulators (Webots, Gazebo, MuJoCo, Isaac Gym/Sim) is provided, focusing on their physical simulation capabilities, rendering quality, and sensor support [12][18][19] 6. Advances in World Models - The paper discusses representative architectures of world models and their applications, such as trajectory prediction in autonomous driving and simulation-reality calibration for articulated robots [13][20]