Stable Diffusion 3

Search documents
慕尼黑工业大学等基于SD3开发卫星图像生成方法,构建当前最大规模遥感数据集
3 6 Ke· 2025-06-30 07:47
Core Insights - A new method for generating satellite imagery using geographic climate prompts and Stable Diffusion 3 (SD3) has been proposed by teams from the Technical University of Munich and ETH Zurich, resulting in the creation of the largest and most comprehensive remote sensing dataset, EcoMapper [1][2][4]. Dataset Overview - EcoMapper consists of over 2.9 million RGB satellite images collected from 104,424 global locations, covering 15 land cover types and corresponding climate records [2][5]. - The dataset includes a training set with 98,930 geographic points, each observed over a 24-month period, and a test set with 5,494 geographic points observed over 96 months [5][6]. Methodology - The research developed a text-image generation model based on fine-tuned SD3, which utilizes climate and land cover details to generate realistic synthetic images [4][8]. - A multi-condition model framework using ControlNet was also developed to map climate data or generate time series, simulating landscape evolution [4][12]. Model Performance - The study evaluated the performance of SD3 and DiffusionSat models in generating climate-aware satellite images, with metrics indicating significant improvements over baseline models [14][19]. - The SD3-FT-HR model achieved the lowest Fréchet Inception Distance (FID) score of 49.48, indicating high realism in generated images [15][16]. Climate Sensitivity Analysis - The generated vegetation density was found to be significantly correlated with climate changes, with performance varying under extreme weather conditions [16][18]. Applications and Future Directions - EcoMapper provides a framework for simulating satellite images based on climate variables, offering new opportunities for visualizing climate change impacts and enhancing integration of satellite and climate data for downstream models [22][26].
TikTok 德国娱乐公会:科技与文化融合的直播新势力
Sou Hu Cai Jing· 2025-06-19 07:53
德国公会通过AI、量子算法等技术工具,构建了"AI内容工厂+量子算法预测"的运营闭环。以某公会为例,其利用Stable Diffusion 3.0生成1000个本土化IP,结合AI声纹克隆技术实现24小时不间断直播,单月变现37万美元,成本仅为真人模式的 1/4。这种"真人+AI主播"混合模式,不仅降低了人力成本,还通过AI内容工厂实现从脚本生成到素材渲染、配音的全流程自动 化,单条视频完播率提升至45%。 量子算法的应用进一步提升了内容精准度。例如,某公会通过时空序列分析,提前48小时预判"碳中和"主题直播流量高峰,单 场观看量破百万。AI内容审核系统则将违规内容误判率控制在0.1%以下,帮助公会避免账号封禁风险,月均损失减少50万欧 元。 二、文化融合:本土化内容与垂直领域的深度绑定 在TikTok全球化浪潮中,德国市场凭借其独特的用户生态、政策红利与技术赋能,正成为欧洲娱乐直播领域的核心战场。截至 2025年,德国TikTok用户规模突破2200万,日均使用时长超75分钟,用户年均直播消费达75欧元,单场游戏、科技类直播收益 可达3000欧元。这一数据背后,是德国市场对本土化内容的强烈需求mcn与低竞争 ...