Workflow
Yuan Dong Zi Xin
icon
Search documents
2024年政府工作报告学习体会:着力加强信用服务体系建设,全力支持新质生产力发展
Yuan Dong Zi Xin· 2024-03-05 16:00
2024 年 3 月 5 日 远东研究·远东评论 作者:研究与发展部 邮箱:research@fecr.com.cn 着力加强信用服务体系建设,全力支持新质生产力发展 ——2024 年政府工作报告学习体会 3 月 5 日,国务院总理李强在向十四届全国人大二次会议所作 2024 年政府工作报告(以下简称"政府工作报 告")中,深刻指出了过去一年全面建设社会主义现代化国家迈出坚实步伐,进而明确提出了今年经济社会发展的 总体要求,其中强调大力推进现代化产业体系建设,加快发展新质生产力。本文密切结合我们所处行业,认真学习 领悟习总书记在中共中央政治局第十一次集体学习时讲话和李总理作的 2024 年政府工作报告精神,重点针对信用 服务业全力服务新质生产力发展做出如下思考。需强调的是,本文所指的信用服务体系暨信用服务行业,系指依法 向社会提供信用信息服务、信用增进、信用管理咨询等信用产品和服务的专业服务机构,包括企业征信、个人征信、 信用评级、信用担保、信用保险、商业保理、信用管理咨询等丰富业态体系。 一、提升科创领域信用服务体系质量,助推创新引擎赋能高质量发展 今年 1 月,习近平总书记在中共中央政治局第十一次集体学习 ...
科技型企业信用评级方法与模型探究
Yuan Dong Zi Xin· 2024-02-25 16:00
Group 1: Definition and Characteristics of Technology Enterprises - Technology enterprises should be defined within high-tech industries and strategic emerging industries, with specific indicators such as R&D investment and personnel to assess their technological attributes[3][36]. - From 2018 to 2022, the median revenue growth rate of companies listed on the Sci-Tech Innovation Board was significantly higher than that of the Shanghai and Shenzhen A-shares, indicating a high growth characteristic of technology enterprises[46]. - The overall debt ratio of Sci-Tech Innovation Board companies is lower than that of general enterprises, with a lower proportion of interest-bearing debt, suggesting that capital primarily comes from equity investment[62]. Group 2: Evaluation Indicators for Credit Risk - Credit risk evaluation for technology enterprises should consider innovation strength, operational status, financial leverage, and debt repayment ability[15][75]. - R&D expenditure should be assessed both in absolute terms and as a percentage of revenue, with a threshold of 5% for the last three years or a cumulative amount of 60 million yuan[37][43]. - Debt repayment ability can be measured using the EBITDA interest coverage ratio and cash flow from operations to total debt ratio, which are critical for assessing financial flexibility[97]. Group 3: Challenges in Credit Rating - The rapid pace of technological updates and industry changes makes forward-looking predictions difficult, necessitating a combination of quantitative models and qualitative assessments[95][101]. - The strong specialization in the technology sector means that non-experts may struggle to accurately evaluate qualitative indicators such as market position and intellectual property value[102]. - Different industries within the technology sector exhibit varying risk characteristics, which complicates the application of a unified credit rating methodology[108].