Workflow
挂谷猜想
icon
Search documents
韦东奕账号已满月,近期掉粉30多万,发布首条视频后再未更新
Qi Lu Wan Bao· 2025-07-04 07:13
Group 1 - The core viewpoint is that Wei Dongyi, a researcher at Peking University's School of Mathematical Sciences, has gained significant online popularity but is experiencing a decline in followers on social media platforms [1][3] - Wei Dongyi's Douyin account had over 24.3 million followers initially, but has lost more than 300,000 followers in half a month, averaging a loss of 20,000 followers per day [3] - There are ongoing discussions regarding whether the account was opened at Wei Dongyi's own will, who is currently managing it, and whether it will be deactivated in the future [3] Group 2 - Wei Dongyi is set to become an associate professor at Peking University, with a tenure starting from August 1, 2025, although his current title remains assistant professor and researcher [8] - The Human Resources Department of Peking University stated that title evaluations are publicly announced and follow a specific process, with future updates to be provided through official channels [8]
35岁北大校友突破125年数学难题,网友:华人数学奇迹年
虎嗅APP· 2025-03-05 13:13
Core Viewpoint - The article discusses the resolution of Hilbert's sixth problem, a significant mathematical challenge posed by David Hilbert in 1900, which has been solved by a team of Chinese researchers after 125 years [1][11]. Group 1: Authors and Their Backgrounds - The research was conducted by three authors: Deng Yu, a professor at the University of Chicago; Zaher Hani, an assistant professor at the University of Michigan; and Ma Xiao, also an assistant professor at the University of Michigan [2][27]. - Deng Yu graduated from Peking University and MIT, and completed his PhD at Princeton [28]. - Zaher Hani completed his undergraduate studies at the American University of Beirut and his master's and PhD at UCLA, studying under renowned mathematician Terence Tao [31][34]. - Ma Xiao graduated from the Young Scholars Program at the University of Science and Technology of China and completed his PhD at Princeton in 2023 [35]. Group 2: Significance of the Research - The resolution of Hilbert's sixth problem is not only a theoretical milestone but also provides new mathematical tools for the study of fluid mechanics [5][6]. - The achievement has been celebrated within the mathematical community, with some referring to it as a "miracle year for Chinese mathematics" [6][8]. Group 3: Methodology and Findings - The authors approached the problem by deriving fluid dynamics equations from microscopic Newtonian mechanics using Boltzmann kinetic theory [4][25]. - They introduced a cumulative quantity analysis method to track the complete history of particle collisions, leading to the proof of the long-term validity of the Boltzmann equation [18][20]. - The research culminated in the derivation of the Euler equations for compressible fluids and the Navier-Stokes-Fourier equations under incompressible conditions [21][25].
90后北大校友破解挂谷猜想,陶哲轩激动转发!网友:预定菲尔兹奖
量子位· 2025-02-28 05:19
Core Viewpoint - The article discusses the recent proof of the Kakeya conjecture in three-dimensional space by Chinese mathematician Wang Hong and Columbia University professor Joshua Zahl, which has generated significant interest and could position Wang as a strong candidate for the Fields Medal in 2026 [1][5][6]. Group 1: Kakeya Conjecture Overview - The Kakeya conjecture, proposed by Japanese mathematician Sōichi Kakeya in 1917, involves determining the minimum area that a needle can sweep when rotated in a confined space [8][9]. - The conjecture states that a Kakeya set in three-dimensional space must have both Minkowski and Hausdorff dimensions equal to three, indicating that these sets geometrically fill the space despite appearing sparse [10][11][12]. Group 2: Proof Details - Wang Hong and Joshua Zahl published a 127-page paper proving the three-dimensional Kakeya conjecture, employing complex strategies including non-concentration conditions and multi-scale analysis [3][20]. - Their proof involves defining a situation K(d) and demonstrating a relationship that allows for the induction of dimension parameters towards three [21][23]. - The authors utilized multi-scale analysis to study the organization of pipe-like structures, leading to insights about the density and overlap of these structures [24][25][28]. Group 3: Background on Wang Hong - Wang Hong, born in 1991, is a notable mathematician who could become the first Chinese woman to win the Fields Medal if awarded [7][34]. - She has an impressive academic background, having studied at prestigious institutions and focusing on Fourier transform-related problems [36][38].