Workflow
数论
icon
Search documents
2025世界顶尖科学家协会奖揭晓
Jie Fang Ri Bao· 2025-09-11 01:48
Group 1 - The "Intelligent Science or Mathematics Award" was awarded to Richard S. Palais from Stanford University for his groundbreaking work in geometric analysis and differential geometry, which has practical applications in fields like computer graphics and cryptography [1] - The "Life Sciences or Medicine Award" was awarded to Scott Emmer from Cornell University and Wes Sundquist from the University of Utah for their significant discoveries related to receptor membrane protein transport and degradation mechanisms, which are crucial for understanding viral budding and infection processes [1] - The 2025 World Top Scientists Forum will open on October 24 in the Lingang New Area, featuring the award ceremony for the Top Science Association Awards [3] Group 2 - Wes Sundquist expressed excitement about his upcoming first visit to China, highlighting China's leadership in the scientific field and the potential for collaboration with local scientists [2]
北大校友王虹,将任法国高等研究所常任教授!2/3前辈为菲尔兹奖得主
量子位· 2025-05-28 05:59
Core Viewpoint - The article highlights the recent appointment of Chinese mathematician Wang Hong, known for solving the Kakeya conjecture, as a permanent professor at the Institut des Hautes Études Scientifiques (IHES) in France, marking a significant achievement in her career and the mathematics community [1][2][10]. Group 1: Appointment Details - Wang Hong will officially join IHES on September 1, 2025, and will also hold a position as a mathematics professor at New York University's Courant Institute of Mathematical Sciences [6]. - IHES currently has only seven permanent professors, with five being prominent mathematicians, including two Fields Medal winners [3][4]. Group 2: Academic Background - Wang Hong was born in 1991 in Guilin, Guangxi, and demonstrated exceptional academic ability from a young age, entering Peking University at 16 [15]. - She obtained her bachelor's degree in mathematics in 2011, followed by an engineering degree from École Polytechnique and a master's degree from Paris XI University in 2014, and completed her PhD at MIT in 2019 [16]. Group 3: Research Contributions - Wang Hong, along with UBC mathematics associate professor Joshua Zahl, solved the Kakeya conjecture, a long-standing problem in mathematics that has implications across various fields such as harmonic analysis and number theory [10][12]. - The Kakeya conjecture in three dimensions asserts that a set containing unit-length line segments in every direction must have Minkowski and Hausdorff dimensions equal to three [11]. Group 4: Community Reception - The announcement of Wang Hong's appointment was met with enthusiasm in the mathematics community, with notable figures expressing their support and anticipation for her contributions [7][9]. - Many believe her recent achievement could position her as a strong candidate for the Fields Medal [14].
90后北大校友破解挂谷猜想,陶哲轩激动转发!网友:预定菲尔兹奖
量子位· 2025-02-28 05:19
Core Viewpoint - The article discusses the recent proof of the Kakeya conjecture in three-dimensional space by Chinese mathematician Wang Hong and Columbia University professor Joshua Zahl, which has generated significant interest and could position Wang as a strong candidate for the Fields Medal in 2026 [1][5][6]. Group 1: Kakeya Conjecture Overview - The Kakeya conjecture, proposed by Japanese mathematician Sōichi Kakeya in 1917, involves determining the minimum area that a needle can sweep when rotated in a confined space [8][9]. - The conjecture states that a Kakeya set in three-dimensional space must have both Minkowski and Hausdorff dimensions equal to three, indicating that these sets geometrically fill the space despite appearing sparse [10][11][12]. Group 2: Proof Details - Wang Hong and Joshua Zahl published a 127-page paper proving the three-dimensional Kakeya conjecture, employing complex strategies including non-concentration conditions and multi-scale analysis [3][20]. - Their proof involves defining a situation K(d) and demonstrating a relationship that allows for the induction of dimension parameters towards three [21][23]. - The authors utilized multi-scale analysis to study the organization of pipe-like structures, leading to insights about the density and overlap of these structures [24][25][28]. Group 3: Background on Wang Hong - Wang Hong, born in 1991, is a notable mathematician who could become the first Chinese woman to win the Fields Medal if awarded [7][34]. - She has an impressive academic background, having studied at prestigious institutions and focusing on Fourier transform-related problems [36][38].