Workflow
作物改良
icon
Search documents
中国农业科学院/河南大学合作发表最新Cell论文
生物世界· 2025-07-01 23:57
Core Viewpoint - The article discusses the significance of synonymous mutations in genetic research, particularly their role in cucumber domestication through epitranscriptomic regulation, challenging traditional views on these mutations [2][3]. Group 1: Research Findings - The study published in the journal Cell demonstrates that synonymous mutations can regulate important traits in cucumber by altering m6A modifications and mRNA structural conformations [2][3]. - The research identifies two closely linked genes, YTH1 and ACS2, that interact epistatically to influence cucumber fruit length [5][9]. - A specific synonymous mutation, 1287C>T in the ACS2 gene, is identified as a pathogenic mutation that disrupts m6A methylation and alters RNA structure, leading to changes in fruit length [6][9]. Group 2: Genetic Mechanisms - The YTH1 gene encodes an m6A reader protein, while the ACS2 gene encodes a rate-limiting enzyme for ethylene synthesis in plants, both of which are crucial for cucumber domestication [5][9]. - The study reveals that the wild-type cucumber's ACS2 1287C leads to m6A modification and a loose RNA structure, while the cultivated cucumber's ACS2 1287T results in a compact RNA structure, affecting protein levels and fruit length [6][9].