Workflow
全身性炎症
icon
Search documents
Nature Aging:炎症诱导表观遗传侵蚀,促进衰老干细胞铁死亡
生物世界· 2025-07-02 03:35
Core Viewpoint - The article discusses the impact of systemic inflammation on the aging of muscle stem cells (MuSC) and highlights a mechanism linking chronic inflammation to stem cell aging and ferroptosis, suggesting potential therapeutic strategies to combat age-related muscle degeneration [4][11][13]. Group 1: Mechanism of Aging and Inflammation - Systemic inflammation induces epigenetic erosion, promoting ferroptosis in muscle stem cells, while long-term suppression of systemic inflammation can effectively prevent ferroptosis and maintain muscle stem cell numbers [4][11]. - The study reveals that age-related inflammation decreases H4K20 monomethylation levels in MuSCs, disrupting their quiescent state and leading to ferroptosis [11]. - Inflammation signals downregulate the enzyme Kmt5a, which is responsible for H4K20me1 accumulation, resulting in the epigenetic silencing of genes that counteract ferroptosis [11]. Group 2: Impact on Muscle Regeneration - Aging is characterized by a decline in muscle mass, strength, and regenerative capacity, leading to decreased quality of life in the elderly [7]. - Muscle stem cells play a crucial role in muscle repair and maintenance, but their function significantly declines with age due to both intrinsic changes and external factors like inflammation [7][8]. - Chronic systemic inflammation is one of the most important external factors leading to stem cell aging, as it inhibits muscle regeneration [8][9]. Group 3: Research Findings and Implications - The research emphasizes that aging cells are a major contributor to age-related inflammation in the muscle stem cell microenvironment, impairing their regenerative capacity [9]. - Long-term suppression of inflammation starting at middle age (12 months in mice) can restore muscle vitality and promote functional recovery [11][13]. - These findings reveal an epigenetic switch linking chronic inflammation to muscle stem cell aging and ferroptosis, providing potential therapeutic strategies against age-related muscle degeneration [13].