千亿乃至万亿参数大模型训练

Search documents
中美AI叙事和背后的算力逻辑
雪球· 2025-04-04 03:16
Core Viewpoints - The article discusses the differences in AI narratives and computational needs between China and North America, highlighting China's focus on practical applications and cost-effectiveness in AI deployment, while North America aims for advanced models and AGI [1][2][3]. China AI Narrative - China's AI narrative emphasizes the democratization of AI through open-source models and the development of smaller distilled models for edge applications, leading to widespread implementation [1]. - The focus is on practical applications that do not necessarily require high-end GPUs, with companies leveraging existing infrastructure to achieve rapid deployment and monetization [3][4]. China Computational Needs - The article suggests that for many AI applications, especially those that are not highly complex, existing Chinese chips like H20 and domestic ASICs are sufficient [4]. - There is a discussion on the potential of using simpler architectures, such as FPGA combined with RISC-V, for edge AI applications [4]. North America AI Narrative - North America's AI narrative continues to push for breakthroughs towards AGI, with a focus on multimodal high-order models and trillion-parameter models [2]. - The article notes that the progress in North America is slower compared to China, leading to skepticism about the necessity of high-end NVIDIA chips in certain applications [3][9]. North America Computational Needs - High-end NVIDIA GPUs are still in high demand, particularly for applications requiring high concurrency and real-time generation, such as multimodal AI applications [5][6]. - The need for advanced chips is emphasized for training large models and applications in fields like AI for science, where low latency is critical [7][8]. Key Comparisons - The article highlights that while China is achieving rapid results with lower-cost solutions, North America may face challenges in meeting the demands of high-performance applications without high-end GPUs [3][9]. - The potential of DS's AI infrastructure capabilities is noted as a variable that could impact the reliance on NVIDIA chips in the future [10].