基因组与组合生物合成

Search documents
丁奎岭院士:化学合成要被生物合成取代了吗?
合成生物学与绿色生物制造· 2025-06-16 10:58
Core Viewpoint - The integration of chemical and biological synthesis is essential for achieving efficient chemical bond activation, cleavage, and reorganization, emphasizing the collaborative potential of both methods [2][4]. Group 1: Chemical and Biological Synthesis - The core goal of chemical-biological synergy is to enhance efficiency and reduce costs by leveraging the strengths of both chemical and biological synthesis methods [2][4]. - Chemical synthesis will not be completely replaced by biological synthesis; instead, the focus is on how to complement each other to create lower-cost and higher-value pathways [4][5]. Group 2: Case Studies and Applications - Examples include the production of artemisinin, where biological synthesis converts sugars to artemisinic acid, while chemical methods enhance production efficiency through hydrogenation and oxidation [6]. - Collaborative efforts in various fields, such as polymer materials and drug development, have shown significant results, indicating a broad application prospect for chemical-biological synergy [6]. Group 3: Advances in Catalysis - Biomimetic catalysis is a key area where chemists learn from biologists, with future developments focusing on the diversity of catalytic systems and synergistic catalytic functions [7]. - Breakthroughs in artificial enzymes and non-natural reactions have been achieved by combining chemical catalysts with protein systems, providing new pathways for complex molecule synthesis [8]. Group 4: Innovations in Synthetic Biology - Combinatorial biosynthesis through genome recombination and editing generates non-natural products, with chemical methods playing a crucial role in precursor provision and subsequent modifications [9]. - The synthesis of nucleic acids, proteins, and carbohydrates faces challenges, but advancements are being made in functionalization and long DNA synthesis [11][12][13]. Group 5: Future Outlook and Technological Integration - AI and big data are poised to play significant roles in promoting the integration of chemical and biological synthesis, accelerating genome mining, molecular design, and synthesis pathway optimization [14]. - The deep-sea scientific program exemplifies the potential for protein and enzyme modification in extreme environments, showcasing innovative research directions [15]. Group 6: Policy and Support for Research - A call for national-level top-level design to promote interdisciplinary research in chemical-biological synergy, particularly supporting young researchers in fields like medicine, materials, energy, and carbon neutrality [16].