大模型压缩
Search documents
1年涨五倍,被苹果看上的“模型瘦身”公司靠谱吗?
Hu Xiu· 2025-09-02 05:21
Core Insights - Multiverse Computing has developed a technology called CompactifAI that can compress large AI models by 80-95% while maintaining performance, allowing these models to run on devices like smartphones and cars [1][6][11] - The company has seen significant financial growth, with its valuation increasing from $108 million in 2024 to $500 million, making it one of the largest AI startups in Spain [2][4] - The rise of generative AI has led to increased demand for efficient model compression solutions, positioning Multiverse favorably in a competitive landscape [6][19] Company Overview - Founded in 2019, Multiverse initially focused on quantum computing software for financial applications before pivoting to AI model compression [5][6] - The team consists of highly qualified individuals, with 40% holding PhDs and expertise spanning finance, quantum physics, and technology entrepreneurship [5] Technology and Innovation - CompactifAI utilizes quantum tensor network techniques to efficiently compress model parameters, which is distinct from traditional methods like quantization and distillation [8][10] - The compressed models, such as "SuperFly" and "ChickBrain," have significantly reduced parameter counts while retaining performance, making them suitable for various applications [12][13][16] Market Position and Competition - Multiverse's technology has attracted interest from major hardware companies like Apple and Samsung, aiming to integrate their models into next-generation devices [19] - The competitive landscape is intensifying, with tech giants and startups alike entering the AI efficiency space, focusing on model acceleration and optimization [20][21] Business Model and Services - Multiverse offers three commercial service models: API access to compressed models, private deployment licenses, and model compression services for clients [16][17] - The cost savings from using CompactifAI are substantial, with reduced inference costs and improved processing speeds, making it appealing to enterprises using large models [16][18]