Workflow
思维链修复
icon
Search documents
思维链也会「跳帧」?浙大团队提出CoT-Bridge,显著提升数学推理性能
机器之心· 2025-06-03 06:26
在大语言模型(LLM)飞速发展的今天,Chain-of-Thought(CoT)技术逐渐成为提升复杂推理能力的关键范式,尤 其是在数学、逻辑等结构化任务中表现亮眼。 本文的共同第一作者是徐皓雷和颜聿辰。徐皓雷是浙江大学的一年级硕士生,主要研究兴趣集中在大模型推理和可解释 性研究;颜聿辰是浙江大学博士三年级研究生,主要研究兴趣集中在大模型推理和智能体。本文通讯作者是浙江大学鲁 伟明教授和沈永亮研究员。 但你是否注意到:即使是精心构建的 CoT 数据,也可能存在 "跳跃式" 推理,缺失关键中间步骤。对人类专家来说这 些步骤或许 "理所当然",但对模型而言,却可能是无法逾越的鸿沟。 为了解决这一问题,浙江大学联合微软亚洲研究院、香港中文大学提出了 Thought Leap Bridge 任务,并开发了思维 链修复方法:CoT-Bridge。实验显示,该方法显著提升了多个数学与逻辑任务中的推理准确率,并能作为 "即插即用" 的模块嵌入到知识蒸馏、强化学习等流程中。 CoT 不等于 Coherent-of-Thought 思维跳跃是如何破坏推理链的? CoT 的设计初衷是让大模型像人一样 "按步骤思考",然而研究团队发 ...