有监督微调

Search documents
喝点VC|a16z关于DeepSeek的内部复盘:推理模型革新与20倍算力挑战下的AI模型新格局
Z Potentials· 2025-03-23 05:10
Core Insights - The article discusses the emergence and significance of DeepSeek, a new high-performance reasoning model from China, highlighting its open-source nature and the implications for the AI landscape [3][4][12]. Group 1: DeepSeek Overview - DeepSeek has gained attention for its performance on AI model rankings, raising both interest and concerns [3]. - The model's open-source release of weights and technical details provides valuable insights into reasoning models and their future development [4][12]. Group 2: Training Process - The training of DeepSeek involves three main steps: pre-training on vast datasets, supervised fine-tuning (SFT) with human-generated examples, and reinforcement learning with human feedback (RLHF) [6][9][10]. - The training process is designed to enhance the model's ability to provide accurate and contextually relevant answers, moving beyond simple question-answering to more complex reasoning [11][12]. Group 3: Innovations and Techniques - DeepSeek R1 represents a culmination of various innovations, including self-learning capabilities and multi-stage training processes that improve reasoning abilities [11][13][14]. - The model employs a mixture of experts (MoE) architecture, which allows for efficient training and high performance in reasoning tasks [15][30]. Group 4: Performance and Cost - The cost of training DeepSeek V3 was approximately $5.5 million, with the transition to R1 being less expensive due to the focus on reasoning and smaller-scale SFT [27][29]. - The article notes that the performance of reasoning models has significantly improved, with DeepSeek R1 demonstrating capabilities comparable to leading models in the industry [31][35]. Group 5: Future Implications - The rise of reasoning models like DeepSeek indicates a shift in the AI landscape, necessitating increased computational resources for inference and testing [31][34]. - The open-source nature of these models fosters innovation and collaboration within the AI community, potentially accelerating advancements in the field [36][39].