Workflow
机器人低层控制
icon
Search documents
Kitchen-R :高层任务规划与低层控制联合评估的移动操作机器人基准
具身智能之心· 2025-08-25 00:04
Core Viewpoint - The article introduces the Kitchen-R benchmark, a unified evaluation framework for task planning and low-level control in embodied AI, addressing the existing fragmentation in current benchmarks [4][6][8]. Group 1: Importance of Benchmarks - Benchmarks are crucial in various fields such as natural language processing and computer vision for assessing model progress [7]. - In robotics, simulator-based benchmarks like Behavior-1K are common, providing model evaluation and training capabilities [7]. Group 2: Issues with Existing Benchmarks - Current benchmarks for high-level language instruction and low-level robot control are fragmented, leading to incomplete assessments of integrated systems [8][9]. - High-level benchmarks often assume perfect execution of atomic tasks, while low-level benchmarks rely on simple single-step instructions [9]. Group 3: Kitchen-R Benchmark Features - Kitchen-R fills a critical gap in embodied AI research by providing a comprehensive testing platform that closely simulates real-world scenarios [6][8]. - It includes a digital twin kitchen environment and over 500 language instructions, supporting mobile ALOHA robots [9][10]. - The benchmark supports three evaluation modes: independent evaluation of planning modules, independent evaluation of control strategies, and critical full system integration evaluation [9][10]. Group 4: Evaluation Metrics - Kitchen-R is designed with offline independent evaluation and online joint evaluation metrics to ensure comprehensive system performance measurement [16][20]. - Key metrics include Exact Match (EM) for task planning accuracy and Mean Squared Error (MSE) for trajectory prediction accuracy [20][21]. Group 5: Baseline Methods - Kitchen-R provides two baseline methods: a VLM-driven task planning baseline and a Diffusion Policy low-level control baseline [43][49]. - The VLM planning baseline enhances planning accuracy through contextual examples and constrained generation [47][48]. - The Diffusion Policy baseline integrates visual features and robot states to predict future actions [49][52]. Group 6: Future Directions - Kitchen-R can expand to include more complex scenarios, such as multi-robot collaboration and dynamic environments, promoting the application of language-guided mobile manipulation robots in real-world settings [54].