Workflow
机器人操控
icon
Search documents
机器人操控新范式:一篇VLA模型系统性综述 | Jinqiu Select
锦秋集· 2025-09-02 13:41
Core Insights - The article discusses the emergence of Vision-Language-Action (VLA) models based on large Vision-Language Models (VLMs) as a transformative paradigm in robotic manipulation, addressing the limitations of traditional methods in unstructured environments [1][4][5] - It highlights the need for a structured classification framework to mitigate research fragmentation in the rapidly evolving VLA field [2] Group 1: New Paradigm in Robotic Manipulation - Robotic manipulation is a core challenge at the intersection of robotics and embodied AI, requiring deep understanding of visual and semantic cues in complex environments [4] - Traditional methods rely on predefined control strategies, which struggle in unstructured real-world scenarios, revealing limitations in scalability and generalization [4][5] - The advent of large VLMs has provided a revolutionary approach, enabling robots to interpret high-level human instructions and generalize to unseen objects and scenes [5][10] Group 2: VLA Model Definition and Classification - VLA models are defined as systems that utilize a large VLM to understand visual observations and natural language instructions, followed by a reasoning process that generates robotic actions [6][7] - VLA models are categorized into two main types: Monolithic Models and Hierarchical Models, each with distinct architectures and functionalities [7][8] Group 3: Monolithic Models - Monolithic VLA models can be implemented in single-system or dual-system architectures, integrating perception and action generation into a unified framework [14][15] - Single-system models process all modalities together, while dual-system models separate reflective reasoning from reactive behavior, enhancing efficiency [15][16] Group 4: Hierarchical Models - Hierarchical models consist of a planner and a policy, allowing for independent operation and modular design, which enhances flexibility in task execution [43] - These models can be further divided into Planner-Only and Planner+Policy categories, with the former focusing solely on planning and the latter integrating action execution [43][44] Group 5: Advancements in VLA Models - Recent advancements in VLA models include enhancements in perception modalities, such as 3D and 4D perception, as well as the integration of tactile and auditory information [22][23][24] - Efforts to improve reasoning capabilities and generalization abilities are crucial for enabling VLA models to perform complex tasks in diverse environments [25][26] Group 6: Performance Optimization - Performance optimization in VLA models focuses on enhancing inference efficiency through architectural adjustments, parameter optimization, and inference acceleration techniques [28][29][30] - Dual-system models have emerged to balance deep reasoning with real-time action generation, facilitating smoother deployment in real-world scenarios [35] Group 7: Future Directions - Future research directions include the integration of memory mechanisms, 4D perception, efficient adaptation, and multi-agent collaboration to further enhance VLA model capabilities [1][6]
面向真实世界机器人操控!智元机器人推出统一世界模型平台
Zhong Zheng Wang· 2025-08-14 03:19
Core Insights - The company Zhiyuan Robotics has launched a unified world model platform called Genie Envisioner (GE) for real-world robotic control, integrating future frame prediction, strategy learning, and simulation evaluation into a closed-loop architecture centered around video generation [1] - Unlike traditional Vision-Language-Action (VLA) methods that map visual inputs to language space, GE models the interaction dynamics between robots and their environment directly in visual space, allowing for more precise and direct modeling of robot-environment dynamics [1] - The new approach retains spatial structure and temporal evolution information during the manipulation process, enhancing the robot's ability for efficient cross-ontology generalization and precise execution of long-sequence tasks [1] - The company plans to open-source the entire code, pre-trained models, and evaluation tools for GE, with future expansions to support more sensor modalities and enhance human-robot collaboration in intelligent manufacturing and service robotics [1]