氛围式编程

Search documents
「幻觉」竟是Karpathy十年前命名的?这个AI圈起名大师带火了多少概念?
机器之心· 2025-07-28 10:45
Core Viewpoint - The article discusses the influential contributions of Andrej Karpathy in the AI field, particularly his role in coining significant terms and concepts that have shaped the industry, such as "hallucinations," "Software 2.0," "Software 3.0," "vibe coding," and "bacterial coding" [1][6][9]. Group 1: Naming and Concepts - Karpathy coined the term "hallucinations" to describe the limitations of neural networks, which generate meaningless content when faced with unfamiliar concepts [1][3]. - He is recognized as a master of naming in the AI community, having introduced terms like "Software 2.0" and "Software 3.0," which have gained traction over the years [6][9]. - The act of naming is emphasized as a foundational behavior in knowledge creation, serving as a stable target for global scientific focus [7]. Group 2: Software Evolution - "Software 1.0" refers to traditional programming where explicit instructions are written in languages like Python and C++ [12][14]. - "Software 2.0" represents a shift to neural networks, where developers train models using datasets instead of writing explicit rules [15]. - "Software 3.0" allows users to generate code through simple English prompts, making programming accessible to non-developers [16][17]. Group 3: Innovative Programming Approaches - "Vibe coding" encourages developers to immerse themselves in the development atmosphere, relying on LLMs to generate code based on verbal requests [22][24]. - "Bacterial coding" promotes writing modular, self-contained code that can be easily shared and reused, inspired by the adaptability of bacterial genomes [30][35]. - Karpathy suggests balancing the flexibility of bacterial coding with the structured approach of eukaryotic coding to support complex system development [38]. Group 4: Context Engineering - Context engineering has gained attention as a more comprehensive approach than prompt engineering, focusing on providing structured context for AI applications [43][44]. - The article highlights a shift towards optimizing documentation for AI readability, indicating a trend where 99.9% of content may be processed by AI in the future [45].