Workflow
熵爆炸
icon
Search documents
拒绝“熵崩塌”和“熵爆炸”!这项研究让大模型学会“精确探索”,推理成绩飙升
量子位· 2025-10-13 08:47
Core Insights - The article discusses the advancements in large language models (LLMs) using a method called RLVR (Reinforcement Learning with Verifiable Rewards), which has led to significant breakthroughs in mathematical, coding, and scientific reasoning tasks since 2024 [1][2]. Group 1: Challenges in RLVR Training - RLVR faces a critical bottleneck known as the "exploration imbalance," where exploration can either be too limited, leading to entropy collapse, or too uncontrolled, resulting in entropy explosion [2][9]. - The traditional entropy regularization method encourages exploration but can lead to either rapid convergence to a deterministic strategy or chaotic outputs due to excessive uncertainty [6][10]. Group 2: Proposed Solution - SIREN - The research team introduced a Selective Entropy Regularization method (SIREN) that employs three mechanisms: defining the exploration range, focusing on key decision points, and stabilizing the training process [14][18]. - SIREN limits entropy calculations to a core set of high-probability tokens, ensuring that exploration occurs only within semantically reasonable candidates [14][15]. - It identifies key decision points in the generation sequence where entropy is significantly higher than average, concentrating exploration incentives on these critical areas [16]. - The method adjusts the entropy target to maintain it within a reasonable range, preventing training instability [17]. Group 3: Experimental Validation - Experimental results demonstrate that SIREN significantly improves performance across various models and datasets, achieving an average major accuracy (maj@k) of 54.6% on Qwen2.5-Math-7B, surpassing the strongest baseline by 4.8% [22][24]. - The effective exploration facilitated by SIREN leads to a fundamental change in performance compared to traditional entropy regularization methods [25][32]. - The research indicates that SIREN maintains diversity in answers and avoids confusion collapse, contributing to a smoother and more controllable training process [28][30]. Group 4: Future Implications - The study emphasizes the importance of stable, controllable, and efficient exploration in releasing the potential of large models and overcoming performance bottlenecks [35]. - The proposed selective exploration control mechanism offers a feasible solution for refining exploration strategies in future reasoning model training paradigms [35].