Workflow
终身行人重识别
icon
Search documents
IEEE TPAMI 2025 | 北京大学提出LSTKC++,长短期知识解耦与巩固驱动的终身行人重识别
机器之心· 2025-07-03 00:22
本文的第一作者为北京大学博士二年级学生徐昆仑,通讯作者为北京大学王选计算机研究所研究员、助理教授周嘉欢。 近日,北京大学王选计算机研究所周嘉欢团队在人工智能重要国际期刊 IEEE TPAMI 发布了一项最新的研究成果: LSTKC++ 。 该框架引入了长短期知识解耦与动态纠正及融合机制,有效保障了模型在终身学习过程中对新知识的学习和对历史知识的记忆。目前该研究已被 IEEE TPAMI 接收,相关代码已开源。 行人重识别(Person Re-Identification, ReID)技术的目标是在跨摄像头、跨场景等条件下,根据外观信息准确识别行人身份,并在多摄像头监控、智能 交通、公共安全与大规模视频检索等应用中具有重要作用。 在实际应用中,行人数据分布常因地点、设备和时间等因素的变化而发生改变,使得新数据和训练数据呈现域差异,导致传统的「单次训练、静态推理」 ReID 范式难以适应测试数据的长期动态变化。 这催生了一个更具挑战性的新任务——终身行人重识别(Lifelong Person Re-ID, LReID)。该任务要求模型能够利用新增域的数据进行训练,在学习新域 数据知识的同时,保持旧域数据的识别能力 ...