Workflow
视觉大语言模型VLM
icon
Search documents
即将开课!端到端与VLA自动驾驶小班课来啦(扩散模型/VLA等)
自动驾驶之心· 2025-08-10 23:32
Core Viewpoint - End-to-End Autonomous Driving (E2E) is identified as the core algorithm for intelligent driving mass production, with significant advancements and competition emerging in the industry following the recognition of UniAD at CVPR [2][3] Group 1: E2E Autonomous Driving Overview - E2E systems directly model the relationship between sensor inputs and vehicle control information, avoiding error accumulation seen in traditional modular approaches [2] - The introduction of BEV perception has bridged gaps between modular methods, leading to a significant technological leap [2] - The emergence of various algorithms indicates that UniAD is not the ultimate solution for E2E, highlighting the rapid development in this field [2] Group 2: Learning Challenges in E2E - The fast-paced development in E2E technology has made previous educational resources inadequate, necessitating a comprehensive understanding of multiple domains such as multimodal large models, BEV perception, and reinforcement learning [3][4] - Beginners face challenges due to fragmented knowledge and the overwhelming volume of literature, often leading to abandonment before mastering the concepts [3] Group 3: Course Development - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address learning challenges, focusing on practical and theoretical integration [4][5][6] - The course aims to provide a structured framework for understanding E2E research and enhance research capabilities by categorizing papers and extracting innovative points [5] Group 4: Course Structure - The course includes five chapters covering topics from the introduction of E2E algorithms to practical applications involving RLHF fine-tuning [9][10][11][12][13] - Key areas of focus include the evolution of E2E paradigms, the significance of VLA in the current landscape, and practical implementations of diffusion models [11][12] Group 5: Expected Outcomes - Participants are expected to achieve a level equivalent to one year of experience as an E2E autonomous driving algorithm engineer, mastering various methodologies and key technologies [18] - The course aims to facilitate the application of learned concepts in real-world projects, enhancing employability in the autonomous driving sector [18]